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Introduction

Prof. Tsai

Introduction

» Considering different types of communication channels, such as

— AWGN channels: AWGN is the main source of channel

impairment, such as the wireline/space communication
channels

— Multipath channels: multipath interference is the main
source of channel impairment, such as the wireless channels

— Interference channels: interference is the main source of
channel impairment, such as the random access channels

» These scenarios are naturally quite different from each other
— But they share a common practical shortcoming: reliability

» The use of error-control coding is essential for supporting
reliable transmissions.
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Introduction (Cont.)

* From a communication theoretic perspective, the two key
resources for reliable transmissions are

— Transmitted signal power P
— Channel bandwidth B

« With the power spectral density of the receiver noise, the
signal energy per bit-to-noise power spectral density ratio is

E,/N,=E,/(N,log, M)=PT,/(N,log, M)=P/(N,Blog, M)
— E_: symbol energy; 7.: symbol duration; M-ary modulation

* E,/N, uniquely determines the BER of a particular modulation
scheme operating over a Gaussian noise channel.

« For a fixed E,/N,, the only practical option available for
improving data quality is to use error-control coding

Prof. Tsai 5

Introduction (Cont.)

* Error-control coding: At the transmitter, incorporate a fixed
number of redundant bits into the structure of a codeword

 Itis feasible to provide reliable communication over a noisy
channel

— Provided that Shannon’s code theorem is satisfied

 In effect, channel bandwidth is traded off for reliability in
communications.

* Another practical motivation for the use of coding is to reduce
the required E,/N, for a fixed BER. This reduction in £ /N,
may, in turn, be exploited to

— Reduce the required transmitted power
— Reduce the hardware costs by requiring a smaller antenna

size (antenna gain) in the case of radio communications
Prof. Tsai 6




Forward Error Correction

» Error control for data integrity may be achieved by means of
forward error correction (FEC).

» The discrete source generates information (binary symbols)

» The channel encoder accepts message bits and adds
redundancy according to a prescribed rule

— Produce an encoded data stream at a higher bit rate

» Based on a noisy version of the encoded data stream, the
channel decoder decide which message bits were actually

Discrete channel

transmitted —————-—-————"""————————— ;

Discrete Channel
source encoder

=== User

Modulator channel Detector decoder

I
I
Waveform ! Channel
I
I
I

Coding and modulation________ 4 ,,,,,,,,,,,,, |
performed separately
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Forward Error Correction (Cont.)

» The combined goal of the channel encoder and decoder is to
minimize the effect of channel noise/interference.

— The number of errors between the channel encoder input and
the channel decoder output (source <> sink) is minimized.

* For a fixed modulation scheme, the addition of redundancy
implies the need for

— Increasing in transmission bandwidth
— Increasing in system complexity
— Tradeoff considering bandwidth and complexity is essential

Discrete Encoder/modulator Waveform Detector/decoder User
source channel

Coding and modulation T
combined Noise
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Types of Error-Correcting Codes

 Historically, error-correcting codes have been classified into
block codes and convolutional codes.

— The distinguishing feature for this particular classification is
the absence or presence of memory in the encoders.

* Block codes, convolutional codes, and trellis codes represent
the classical family of codes

— They follow traditional approaches rooted in algebraic
mathematics

— Block codes and convolutional codes: Coding and
modulation are designed separately

— Trellis codes: Coding and modulation are designed jointly

 In addition, turbo codes and low-density parity-check (LDPC)
codes are two types of new generation coding techniques

Prof. Tsai 9

Block Codes

» To generate an (n, k) block code

— The channel encoder accepts k-bit blocks successively
— For each block, the encoder adds n — k redundant bits
 That are algebraically related to the £ message bits,
* Thereby producing an encoded block of n bits, n > k
* Codeword: The n-bit block, where # is the block length
* The channel data rate (at the encoder output) is R, = (n/k)Rq
— where Rq is the bit rate of the information source.
o The ratio » = k/n is called the code rate, where 0 <r < 1.

k-bit block i n-bit block

— ——»

Rg Encoder R,
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Convolutional Codes

In a convolutional code, the encoding operation may be viewed
as the discrete-time convolution of the input sequence with
the impulse response of the encoder.

The duration of the impulse response equals the memory of the
encoder. b1

Unlike block codes, the channel odder
encoder accepts message bits
as a continuous sequence

and thereby input K Oupu
generates a

continuous sequence of
encoded bits at a higher rate.

— Input 1 bit = Output 2 bits

o)

Flip-flop

Path 2
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Trellis Codes

Conventionally, the operations of channel coding and
modulation are design/performed separately at the transmitter

The most effective method of implementing forward error
correction coding is to combine coding with modulation

Coding 1s redefined as a process of imposing certain patterns
(constellation points) on the transmitted signal

— The resulting code is called a trellis code

Based on the concept that different pairs of constellation points
have different error distances  ¢_ Q AM

® @ O ® 0 0 0 O
dDdlé\
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Turbo Codes

* Turbo codes are a class of high-performance forward error
correction (FEC) codes

— The first practical codes to closely approach the maximum
channel capacity or Shannon limit

— Turbo codes are used in 3G/4G mobile communications

» The design objective of turbo codes is achieved by using
concatenated codes

— which can be of two types: parallel or serial

-

Systematic
bits x

X Encoder 1 Parity-check

Message bits z, L outout
Parallel type "oy -
o—>—
X' ,
Interleaver Encoder 2 Parity-check
bits z,
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Turbo Codes (Cont.)

* The two-stage turbo decoder operates on noisy versions of the
systematic bits and the two sets of parity-check bits

— To produce an estimate of the original message bits
» A distinctive feature of the turbo decoder is the use of feedback

— To produce extrinsic information from one decoder to the
next in an iterative manner

( w r Deintels:lxe:a)vir

. . [
Noisy <X:X - | Decoder OCX Decoder

sustematic o——3 stage 1 > Interleaver stage 2
bits u o >
_N0|sy De-interleaver
parity-check <> Encoder 1 < Encoder 2

bits z; X
¢ \ )
Noisy o
parity-check © Hard limiter

bits z, J{

Decoder bits
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Low-Density Parity-Check (LDPC) Codes

» Low-Density Parity-Check (LDPC) codes are specified by a
parity-check matrix A, represented as AT { A, }

AZ
— where A, is a square matrix of dimensions (n — k) x (n — k)
and A, is a rectangular matrix of dimensions & x (n — k);

— A 1s purposely (randomly with rules) chosen to be sparse;
that is, A consists mainly of 0s and a small number of 1s

» The 1-by-n code vector c is partitioned as ¢ = [b | m]

— where m is the k-by-1 message vector and
b is the (n — k)-by-1 parity-check vector
« Then, based on the parity-check concept, ¢ AT=[b | mJAT=0
 The parity vector b is obtained by b = mP, where P = A,A ™!

Prof. Tsai 15

Linear Block Codes

Prof. Tsai




Channel-Coding Theorem (Revisited)

* Consider a discrete memoryless source that has the source
alphabet S and entropy H(S) bits per source symbol.

* Assume that the source emits symbols once every 7, seconds
— The average information rate: H(S)/T bits per second

— The decoder delivers decoded symbols to the destination at
the same source rate of one symbol every 7, seconds

» The discrete memoryless channel has a channel capacity equal
to C bits per use of the channel.

* Assume that the channel can be used once every T, seconds
— The channel capacity per unit time: C/T, bits per second

— The maximum rate of information transfer over the channel
to the destination: C/T, bits per second

Prof. Tsai 17

Channel-Coding Theorem (Revisited)

* Shannon’s second theorem: the channel-coding theorem

» Let a discrete memoryless source with an alphabet S have
entropy H(S) for random variable S and produce symbols once
every T seconds.

» Let a discrete memoryless channel have capacity C and be
used once every T, seconds.

« Then, if H(S)/T, <C/T,
there exists a coding scheme for which the source output can
be transmitted over the channel and be reconstructed with an
arbitrarily small probability of error.

 The parameter C/T, 1s called the critical rate.

— When H (S ) / T. = C/T,, the system is said to be signaling at
the critical rate.
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Channel-Coding Theorem (Revisited)

« Conversely, if H(S)/T.> /T,
it is not possible to transmit information over the channel and
reconstruct it with an arbitrarily small probability of error.

* The channel-coding theorem is the single most important
result of information theory.

— The theorem specifies the channel capacity C as a
fundamental limit on the rate at which the transmission of
reliable error-free messages can take place over a discrete
memoryless channel.

Error is .
. evitable 1 Information entropy
Channel capacity
Error-free l
transmission v Information entropy
is possible
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Binary Arithmetic

* Many of the codes are binary codes, for which the alphabet
consists only of binary symbols 0 and 1.

» The encoding and decoding functions involve the binary
arithmetic operations of modulo-2 addition and multiplication.

— Modulo-2 addition: EXCLUSIVE-OR operation
ce0+0=0;1+0=1;0+1=1;1+1=0;

— Modulo-2 multiplication: AND operation
*0x0=0;1x0=0;0x1=0;1x1=1;

[ |
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Linear Block Codes

 Definition of a linear code: c;,t¢—>¢

— A code is said to be linear if any two codewords in the
code can be added in modulo-2 arithmetic to produce a
third codeword in the code.

» Consider an (n, k) linear block code, in which £ bits of the »
code bits are always identical to the message sequence.

— This type of codes are called systematic codes.

— For applications requiring both error detection and error
correction, it simplifies implementation of the decoder.

* The (n — k) bits in the remaining portion are computed from the
message bits in accordance with a prescribed encoding rule.

— These (n — k) bits are referred to as parity-check bits.

Prof. Tsai 21

Linear Block Codes (Cont.)

« Letmy, my, -, m; _, constitute a block of £ message bits

— There are 2* distinct message blocks
» Let this sequence of message bits be applied to a linear block
encoder, producing an n-bit codeword: ¢, ¢, -+, ¢
— The (n — k) parity-check bits: by, b, -, b, ,
— For a systematic code, a codeword 1s divided into two parts:
the message bits and the parity-check bits

n—1

» Assume that the (n — k) leftmost bits of a codeword are the
corresponding parity-check bits and the & rightmost bits of the
codeword are the message bits.

i P, J

o= bi’ i:O,“',n_k_l bo,bl, "',bn_k_l m()amla °"9mk—l
m

. -
iy I=n—k,- n—1

Parity bits Message bits
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Linear Block Codes (Cont.)

* The (n — k) parity-check bits are linear sums of the £ message
bits: by =po;mytpmyt -t m

— where p;; = 1, if b; depends on m; ; and p; ; = 0, otherwise
* The coefficients p, ; are chosen in such a way that
— The rows of the generator matrix are linearly independent
— The parity-check equations are unique (different)
» This system can be rewritten in a matrix form:
— The 1-by-k message (row) vector m = [m, m, -, m;_ ]
— The 1-by-(n — k) parity-check (row) vector
b =1[bg, by, s b, 1]
* b =mP, where P is the k-by-(n — k) coefficient matrix
— The 1-by-n code (row) vector ¢ = [cy, ¢y, =, ¢, ]

Prof. Tsai 23

Linear Block Codes: Generator Matrix

* The k-by-(n — k) coefficient matrix is defined as

Poo  Pogi " Ponp-i
Pro P Praka
P= . . . .
| Pio Pry 0 Pretnk1

» The code vector can be expressed as

_him]l— : ¢ = 0 1s a feasible
c-[b.m]—m[P.Ik] codeword for m =0

— where I, is the k-by-k identity matrix
* We then define the k-by-n generator matrix as G

Generator

G=|P:1
[ k] Message vector :> matrix :> Code vector
=c¢=mG m G c
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Linear Block Codes: Generator Matrix (Cont.)

» The full set of codewords (the code) is generated by passing
the set of possible message vectors m into ¢ = mG

— The set of all 2% binary k-tuples (1-by-k vectors)
» A basic property of linear block codes is closure

— The sum of any two codewords in the code is another
codeword

* Consider a pair of code vectors ¢; and ¢; corresponding to a pair
of message vectors m; and m,, respectively.

¢,+¢,=mG+m,G =(mi +mj)G
* The modulo-2 sum of m; and m; is a new message vector m;

— Correspondingly, the modulo-2 sum of ¢; and ¢; is a new
code vector ¢,

Prof. Tsai 25

Linear Block Codes: Parity-Check Matrix

* We define the (n — k)-by-n parity-check matrix as
H=|1_P"|

— where the (n — k)-by-k matrix PT is the transpose of P

» Accordingly, we have
T _ ‘pT P T _pT T _ 0. T _
HG'=|1_,:P" | |=P"+P"=0; GH' =0
Ik
— In modulo-2 arithmetic, the matrix sum PT+ PTis 0

* The inner product of a code vector and the transpose of H
cH' =mGH' =0

Parity-check
Code vector |:> miatrix :> Null vector
c H 0
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Linear Block Codes: Syndrome

* The generator matrix G is used in the encoding operation at
the transmitter.

* On the other hand, the parity-check matrix H is used in the
decoding operation at the receiver.

* Let r denote the 1-by-n received (row) vector that results from
sending the code vector ¢ over a noisy binary channel.

— The sum of ¢ and an error (row) vector, or error pattern, e
r=c+e

* The i-th element of e equals 0 (or 1) if the corresponding
element of r is the same as (or different from) that of c.

i

{1, if an error has occurred in the i — th location

0, otherwise
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Linear Block Codes: Syndrome (Cont.)

» The receiver decodes the code vector ¢ from r

— The decoding starts with the computation of a 1-by-(n — k)
vector called the error-syndrome vector or syndrome

* The syndrome (length n — k) corresponding to r is defined as

s=rH'
— Depends only on the error pattern and not on the h,
transmitted codeword H' = h;2
s=rH" =(c+e)H' =cH' +eH' =eH' h

— Equal to the sum of those rows, corresponding to the errors
have occurred, of the transposed parity-check matrix HT

— If errors occur at locations i and j = s = h; + h,
» where h; and h; are the i-th and j-th rows of H'
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Linear Block Codes: Syndrome (Cont.)

» For an error pattern e, all error patterns that differ to e by a
codeword are e, that satisfy e,—e =c¢; e,—e=e te=c,

— There are 2* distinct code vectors: ¢, i =0, 1, -+, 2k — 1
- e,=e+c, for i=0,1,---,2°~1
— The set of vectors e; 1s called a coset of the code
— A coset has exactly 2* elements (2% different c))
— An (n, k) linear block code has 2” ~* possible cosets
o Q1 [ Dk =2n—k
* FEach coset of the code is characterized by a unique syndrome
s=¢H' =eH' +cH' =eH" +0=eH'
— All error patterns that differ by a codeword have the
same syndrome.
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Linear Block Codes: Syndrome (Cont.)

» With the matrix H, the (n — k) elements of the syndrome s are
linear combinations of the n elements of the error pattern e

= T: I -k | = I”_k pT
fromI s=rH r[ P } e[ P } H:[In—k:P ]

So =| € |TePooTC ulrot "T€ 1Piip)
S = & | Tl Poyi Tl Pt te Dy Linear
° > . .
combinations
Spotmt =|Cni—t| T €t Pok1 T T €1 Picini )

* The syndrome ((n — k) linear equations) contains information
about the error pattern and may be used for error detection.

— There are more unknowns than equations ((n — k) < n)
e cannot be uniquely

solved for arbitrary
— No unique solution for the error pattern error patterns

— The set of equations is underdetermined
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Hamming Distance and Hamming Weight

 Consider a pair of code vectors ¢, and ¢, that have the same
number of elements.

— The Hamming distance, d(c,, ¢,), is defined as the number
of locations in which their respective elements differ.

¢;=1010001110100100
¢,=1000010111100110
d(c,c)=35
— The Hamming weight, w(c), of a code vector ¢ 1s defined as
the number of nonzero elements in the code vector.

» The distance between ¢ and the all-zero code vector.

¢,=1010001110100100
¢,=1000010111100110
w(e)=7; w(c)=38;

Prof. Tsai 31

Decoding Strategy

* The number of possible received vectors r is 2" (n—bit codeword)
« The number of codewords is 2% (k—bit message)
« The whole code space is partitioned into 2% subspaces

codeword
e o o

received vectors
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Decoding Strategy (Cont.)

» Assume that the bit error probability is small enough (< 0.5)
» The best decoding strategy is to pick the code vector
(codeword) closest to the received vector r
— Maximum Likelihood (ML) decision rule
— Choose the codeword with the smallest number of locations

in which their respective elements differ.

r=1000011010100100
¢,=0000000000000000, d(c;,r)=6

¢,=1010001110100100, d(c,r)=3
¢,=1000010111100110, d(c,r)=4

— Choose the one with the smallest Hamming distance d(c,, r)
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Decoding Strategy (Cont.)

* Suppose an (n, k) linear block code is required to detect and
correct all error patterns having a Hamming distance less
than or equal to 7.

— Assume that a code vector ¢, is transmitted and the received
vectorisr=c¢; +e
* Correct detection: the decoder output is ¢ = c;
— Whenever the error pattern e has a Hamming weight
(number of ‘1’ elements) w(e) < ¢, the output must be € = ¢,
» Regardless of the code vector ¢, and the error pattern e
— If the error pattern e has a Hamming weight w(e) > ¢, the
output 1s generally € # ¢,
 The errors generally cannot be corrected
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Minimum Distance Consideration

* Provided that the minimum distance of the code is equal to or
greater than 27+ 1

— With the ML strategy, the decoder will be able to detect and
correct all error patterns of Hamming weight w(e) < ¢

* An (n, k) linear block code has the power to correct all error
patterns of weight ¢ or less if, and only if,

—d(c,¢)22t+ 1, forallc;and ¢; |r=c¢;+e, d(c,c)>2t+1

=d . >2t+1 :>d(ci+e,cj)22t+1—t
= dr,¢c)>1+1

L
r
d(c;, ¢) =2t + 1 d(c;, ¢;) < 2t
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Minimum Distance Consideration (Cont.)

* The minimum distance d_;, of a linear block code 1s the

smallest Hamming distance between any pair of codewords.
— d,., 1s the same as the smallest Hamming weight of the

difference between any pair of code vectors.

— From the closure property, d_ ., is the smallest Hamming

weight of the nonzero code vectors in the code.
* If ¢; and ¢; have the minimum distance d;,

* Based on the closure property, (¢; +¢;) =0 and (¢; + ¢;) =
¢, are two codewords

* 0 and (¢; + ¢;) = ¢, have the minimum distance d;,
* ¢, has the smallest Hamming weight d_.,
— We only need to determine d;, = min w(c;) = 2¢+ 1
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Syndrome Decoding—Coset Construction

« Consider an (n, k) linear block code with the 2* code vectors c;
for 1 <i <2k

» Let r denote the received vector: one of 2” possible values

 The receiver partitions the 2" possible vectors into 2% disjoint
subsets D,

— The i-th subset D, corresponds to code vector ¢; for 1 <i <2*
— ris decoded into ¢; if it is in D, for 1 <7< 2k

» For the decoding to be correct, r must be in the subset that
belongs to the code vector ¢, that was actually sent.

 The construction of the 2* disjoint subsets is shown as follows:

— Step 1: The 2% code vectors are placed in a row with the all-
zero code vector ¢, as the leftmost element.
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Syndrome Decoding—Coset Construction (Cont.)

— Step 2: An error pattern e, is picked and placed under ¢,,
and a second row is formed by adding e, to ¢;

— Step 3: Repeat Step 2 until all the possible error patterns
have been accounted for

» The new error pattern must not previously appeared

2k
[Pie1i=0] ¢ C2_____ s __ -] D& [---__ & —
I -
posete, | co+e,  cate, ... Ci+e | ... ! Cok + € |
e, C, + € C; + € C; + eq Cok + €5 -k
with the smallest weights : " Total 2"
e C, +€; C; + €; C; + co. Gkt g .
. optimal
\’ - - - - -
e?n -k C;. + 8711 -k 03 + e?n -k Cf + 97:1 —k C;.k + 97:1 —k
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Syndrome Decoding—Coset Construction (Cont.)

 The 2* columns represent the disjoint subsets D, (decision region)
« The 2"* rows represent the cosets of the code
— Their first elements e;, j = 2, 3, -+, 2", are coset leaders

» The probability of decoding error is minimized when the most
likely error patterns are chosen as the coset leaders.

— Those with the largest probability of occurrence

 In the case of a binary symmetric channel, the smaller the
Hamming weight of an error pattern is, the more likely it is for
an error to occur.

» The construction should choose the error pattern with the
minimum Hamming weight in its coset as the coset leader

— ¢;: the 2" ~k error patterns with the minimum weight
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Syndrome Decoding Procedure

* The syndrome decoding procedure for linear block codes:
1. For the received vector r, compute the syndrome s = rHT.

2. Within the coset characterized by the syndrome s, identify
the coset leader.

— The error pattern corresponding to the codeword ¢, (all-zero)
— The error pattern is denoted as € (one of 0, e,, e;, ..., €, )
» 3. Compute the code vector ¢ =r + € as the decoded output of
the received vector r.

ros—=>D€eé=>c=r+ée
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Syndrome Decoding Procedure (Cont.)

 If the output syndrome is s = 0
— € # 0 = Some errors occur (error detection)
— The error correction process can be performed
— If w(e)<t,e=¢€and ¢ =r + & is error free
— If w(e) > ¢, e # € and ¢ = r + & contains errors
 If the output syndrome is s =0

— € =0 = No error occurs? Not exactly! The received vector
may contain undetected errors.

— No error correction process can be performed.
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Example: Hamming Codes

 Hamming codes: a family of (n, k) linear block codes that have
the following parameters: (m > 3)

— Code length: n=2m—1
— Number of message bits: k=2" —m — 1
— Number of parity-check bits: n —k=m

» Specifically for m = 3, it is the (7, 4) Hamming code with the
error-correcting capability of = 1 error

* The generator of this code is defined by

1 101 0 0 0]

01 10100
G =

1 1 1 0 01 0

10 1 0 0 0 1|
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Example: Hamming Codes (Cont.)

* The corresponding parity-check matrix is given by
1 00 : 1011

H={0 1 0 : 1 110 [H=[1_:P"]

0O 01 :01T1:1
* The columns of H consist of all the nonzero m-tuples for m =3

« With k = 4, there are 2¥ = 16 distinct message words

Message Codeword Weight | Message Codeword Weight
0000 0000000 0 1000 1101000 3
0001 1010001 3 1001 0111001 4
0010 1110010 4 1010 0011010 3
0011 0100011 3 1011 1001011 4
0100 0110100 3 1100 1011100 4
0101 1100101 4 1101 0001101 3
0110 1000110 3 1110 0101110 4
0111 0010111 4 1111 1111111 7
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Example: Hamming Codes (Cont.)

The smallest Hamming weight of the nonzero codewords is 3.
— It follows that the minimum distance of the code i1s d,, = 3
— The error-correcting capability is = 1 error

There are 7 error patterns, each of which contains only 1 error

The syndrome corresponds to an error pattern: s = rHT

— If the transmitted codeword is ¢, the received vector r is the

corresponding error pattern of the coset leader
For example: r = [0010000] o0
001
s=rH' =[0010000]( 110 [=[001]
011
111
| 101
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Example: Hamming Codes (Cont.)

» Based on the syndrome decoding procedure, the syndrome of
a received vector shows the location of the erroneous bit.

— If s =[001] = the third bit of r is erroneous

» Thus, adding the error pattern € to the received vector r yields
the correct code vector actually sent.

—c=r+e
Syndrome Error Pattern
No error —— 000 0000000 _
100 1000000 m = [1101]
— 010 0100000 r=1[0101101]
—— 001 0010000 s =[010]
I
111 0000010 ¢ = [0001101]
101 0000001
Prof. Tsai 45
Homework

* You must give detailed derivations or explanations,
otherwise you get no points.

« Communication Systems, Simon Haykin (4" Ed.)
 10.4;
« 10.5;
 10.7;
 10.8;

[ |
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