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Introduction
• Considering different types of communication channels, such as

– AWGN channels: AWGN is the main source of channel 
impairment, such as the wireline/space communication 
channels

– Multipath channels: multipath interference is the main 
source of channel impairment, such as the wireless channels 

– Interference channels: interference is the main source of 
channel impairment, such as the random access channels

• These scenarios are naturally quite different from each other

– But they share a common practical shortcoming: reliability

• The use of error-control coding is essential for supporting 
reliable transmissions.
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Introduction (Cont.)
• From a communication theoretic perspective, the two key 

resources for reliable transmissions are

– Transmitted signal power P

– Channel bandwidth B

• With the power spectral density of the receiver noise, the 
signal energy per bit-to-noise power spectral density ratio is

– Es: symbol energy; Ts: symbol duration; M-ary modulation

• Eb/N0 uniquely determines the BER of a particular modulation 
scheme operating over a Gaussian noise channel. 

• For a fixed Eb/N0, the only practical option available for 
improving data quality is to use error-control coding

     b 0 s 0 2 s 0 2 0 2log log logE N E N M PT N M P N B M  
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Introduction (Cont.)
• Error-control coding: At the transmitter, incorporate a fixed 

number of redundant bits into the structure of a codeword

• It is feasible to provide reliable communication over a noisy 
channel

– Provided that Shannon’s code theorem is satisfied 

• In effect, channel bandwidth is traded off for reliability in 
communications. 

• Another practical motivation for the use of coding is to reduce
the required Eb/N0 for a fixed BER. This reduction in Eb/N0

may, in turn, be exploited to

– Reduce the required transmitted power 

– Reduce the hardware costs by requiring a smaller antenna 
size (antenna gain) in the case of radio communications
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Forward Error Correction
• Error control for data integrity may be achieved by means of 

forward error correction (FEC). 

• The discrete source generates information (binary symbols) 

• The channel encoder accepts message bits and adds 
redundancy according to a prescribed rule

– Produce an encoded data stream at a higher bit rate

• Based on a noisy version of the encoded data stream, the 
channel decoder decide which message bits were actually 
transmitted

Coding and modulation
performed separately

Prof. Tsai 8

Forward Error Correction (Cont.)
• The combined goal of the channel encoder and decoder is to 

minimize the effect of channel noise/interference. 

– The number of errors between the channel encoder input and 
the channel decoder output (source  sink) is minimized.

• For a fixed modulation scheme, the addition of redundancy 
implies the need for

– Increasing in transmission bandwidth

– Increasing in system complexity 

– Tradeoff considering bandwidth and complexity is essential 

Coding and modulation
combined
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Types of Error-Correcting Codes
• Historically, error-correcting codes have been classified into 

block codes and convolutional codes. 

– The distinguishing feature for this particular classification is 
the absence or presence of memory in the encoders. 

• Block codes, convolutional codes, and trellis codes represent 
the classical family of codes 

– They follow traditional approaches rooted in algebraic 
mathematics 

– Block codes and convolutional codes: Coding and 
modulation are designed separately

– Trellis codes: Coding and modulation are designed jointly

• In addition, turbo codes and low-density parity-check (LDPC) 
codes are two types of new generation coding techniques
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Block Codes
• To generate an (n, k) block code 

– The channel encoder accepts k-bit blocks successively 

– For each block, the encoder adds n – k redundant bits 

• That are algebraically related to the k message bits, 

• Thereby producing an encoded block of n bits, n > k

• Codeword: The n-bit block, where n is the block length

• The channel data rate (at the encoder output) is R0 = (n/k)RS

– where RS is the bit rate of the information source. 

• The ratio r = k/n is called the code rate, where 0 < r < 1. 

Channel
Encoder

k-bit block n-bit block

R0RS
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Convolutional Codes
• In a convolutional code, the encoding operation may be viewed 

as the discrete-time convolution of the input sequence with 
the impulse response of the encoder. 

• The duration of the impulse response equals the memory of the 
encoder. 

• Unlike block codes, the channel                                                     
encoder accepts message bits                                                               
as a continuous sequence                                                                   
and thereby                                                                                 
generates a                                                                               
continuous sequence of
encoded bits at a higher rate. 

– Input 1 bit  Output 2 bits
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Trellis Codes
• Conventionally, the operations of channel coding and 

modulation are design/performed separately at the transmitter

• The most effective method of implementing forward error 
correction coding is to combine coding with modulation

• Coding is redefined as a process of imposing certain patterns
(constellation points) on the transmitted signal 

– The resulting code is called a trellis code

• Based on the concept that different pairs of constellation points 
have different error distances 16-QAM
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Turbo Codes
• Turbo codes are a class of high-performance forward error 

correction (FEC) codes  

– The first practical codes to closely approach the maximum 
channel capacity or Shannon limit 

– Turbo codes are used in 3G/4G mobile communications

• The design objective of turbo codes is achieved by using 
concatenated codes

– which can be of two types: parallel or serial

Parallel type

X

X
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Turbo Codes (Cont.)
• The two-stage turbo decoder operates on noisy versions of the 

systematic bits and the two sets of parity-check bits

– To produce an estimate of the original message bits 

• A distinctive feature of the turbo decoder is the use of feedback

– To produce extrinsic information from one decoder to the 
next in an iterative manner

Turbo

 Encoder 1  Encoder 2

XX

X

X
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Low-Density Parity-Check (LDPC) Codes
• Low-Density Parity-Check (LDPC) codes are specified by a 

parity-check matrix A, represented as 

– where A1 is a square matrix of dimensions (n – k)  (n – k) 
and A2 is a rectangular matrix of dimensions k  (n – k); 

– A is purposely (randomly with rules) chosen to be sparse; 
that is, A consists mainly of 0s and a small number of 1s  

• The 1-by-n code vector c is partitioned as  c = [b | m] 

– where m is the k-by-1 message vector and                           
b is the (n – k)-by-1 parity-check vector

• Then, based on the parity-check concept,  c AT = [b | m]AT = 0

• The parity vector b is obtained by b = mP, where P = A2A1
–1

1T

2

 
  
 

A
A

A
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Linear Block Codes
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Channel-Coding Theorem (Revisited)
• Consider a discrete memoryless source that has the source 

alphabet  and entropy H(S) bits per source symbol. 

• Assume that the source emits symbols once every Ts seconds

– The average information rate: H(S)/Ts bits per second

– The decoder delivers decoded symbols to the destination at 
the same source rate of one symbol every Ts seconds 

• The discrete memoryless channel has a channel capacity equal 
to C bits per use of the channel. 

• Assume that the channel can be used once every Tc seconds 

– The channel capacity per unit time: C/Tc bits per second 

– The maximum rate of information transfer over the channel 
to the destination: C/Tc bits per second 
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Channel-Coding Theorem (Revisited)
• Shannon’s second theorem: the channel-coding theorem
• Let a discrete memoryless source with an alphabet  have 

entropy H(S) for random variable S and produce symbols once 
every Ts seconds. 

• Let a discrete memoryless channel have capacity C and be 
used once every Tc seconds. 

• Then, if                                                                                     
there exists a coding scheme for which the source output can 
be transmitted over the channel and be reconstructed with an 
arbitrarily small probability of error. 

• The parameter C/Tc is called the critical rate. 

– When                            , the system is said to be signaling at 
the critical rate.

  s cH S T C T

  s cH S T C T
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Channel-Coding Theorem (Revisited)
• Conversely, if                                                                               

it is not possible to transmit information over the channel and 
reconstruct it with an arbitrarily small probability of error.

• The channel-coding theorem is the single most important
result of information theory. 

– The theorem specifies the channel capacity C as a 
fundamental limit on the rate at which the transmission of 
reliable error-free messages can take place over a discrete 
memoryless channel. 

  s cH S T C T

Channel capacity
Information entropyError is

inevitable

Error-free
transmission

is possible
Information entropy
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Binary Arithmetic
• Many of the codes are binary codes, for which the alphabet 

consists only of binary symbols 0 and 1. 

• The encoding and decoding functions involve the binary 
arithmetic operations of modulo-2 addition and multiplication.

– Modulo-2 addition: EXCLUSIVE-OR operation

• 0 + 0 = 0; 1 + 0 = 1; 0 + 1 = 1; 1 + 1 = 0; 

– Modulo-2 multiplication: AND operation

• 0  0 = 0; 1  0 = 0; 0  1 = 0; 1  1 = 1; 
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Linear Block Codes
• Definition of a linear code:

– A code is said to be linear if any two codewords in the 
code can be added in modulo-2 arithmetic to produce a 
third codeword in the code.

• Consider an (n, k) linear block code, in which k bits of the n 
code bits are always identical to the message sequence. 

– This type of codes are called systematic codes.

– For applications requiring both error detection and error 
correction, it simplifies implementation of the decoder.

• The (n – k) bits in the remaining portion are computed from the 
message bits in accordance with a prescribed encoding rule. 

– These (n – k) bits are referred to as parity-check bits. 

ci + cj  ck
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Linear Block Codes (Cont.)
• Let m0, m1, , mk – 1 constitute a block of k message bits 

– There are 2k distinct message blocks

• Let this sequence of message bits be applied to a linear block 
encoder, producing an n-bit codeword: c0, c1, , cn – 1

– The (n – k) parity-check bits: b0, b1, , bn – k – 1

– For a systematic code, a codeword is divided into two parts: 
the message bits and the parity-check bits

• Assume that the (n – k) leftmost bits of a codeword are the 
corresponding parity-check bits and the k rightmost bits of the 
codeword are the message bits.

b0, b1, , bn – k – 1

Parity bits

m0, m1, , mk – 1

Message bits

, 0, , 1

, , , 1
i

i
i k n

b i n k
c

m i n k n 

  
    



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Linear Block Codes (Cont.)
• The (n – k) parity-check bits are linear sums of the k message 

bits:              bi = p0,i m0 + p1,i m1 +  + pk – 1,i mk – 1

– where pj,i = 1, if bi depends on mj ; and pj,i = 0, otherwise 

• The coefficients pj,i are chosen in such a way that 

– The rows of the generator matrix are linearly independent

– The parity-check equations are unique (different)  

• This system can be rewritten in a matrix form:

– The 1-by-k message (row) vector m = [m0, m1, , mk – 1]

– The 1-by-(n – k) parity-check (row) vector                           
b = [b0, b1, , bn – k – 1]

• b = mP, where P is the k-by-(n – k) coefficient matrix

– The 1-by-n code (row) vector c = [c0, c1, , cn – 1]
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Linear Block Codes: Generator Matrix
• The k-by-(n – k) coefficient matrix is defined as

• The code vector can be expressed as

– where Ik is the k-by-k identity matrix  

• We then define the k-by-n generator matrix as G

0,0 0,1 0, 1

1,0 1,1 1, 1

1,0 1,1 1, 1

n k

n k

k k k n k

p p p

p p p

p p p

 

 

    

 
 
 
 
 
 

P




   


   k c b m m P I 

 k
 
G P I

c mG



c = 0 is a feasible
codeword for m = 0
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Linear Block Codes: Generator Matrix (Cont.)
• The full set of codewords (the code) is generated by passing 

the set of possible message vectors m into c = mG

– The set of all 2k binary k-tuples (1-by-k vectors) 

• A basic property of linear block codes is closure

– The sum of any two codewords in the code is another 
codeword

• Consider a pair of code vectors ci and cj corresponding to a pair 
of message vectors mi and mj, respectively. 

• The modulo-2 sum of mi and mj is a new message vector mk

– Correspondingly, the modulo-2 sum of ci and cj is a new 
code vector ck

 i j i j i j    c c m G m G m m G
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Linear Block Codes: Parity-Check Matrix
• We define the (n – k)-by-n parity-check matrix as 

– where the (n – k)-by-k matrix PT is the transpose of P

• Accordingly, we have 

– In modulo-2 arithmetic, the matrix sum PT + PT is 0

• The inner product of a code vector and the transpose of H

T
n k   H I P

T
T T T T T;n k

k


          
PHG I P P P 0 GH 0
I



T T cH mGH 0



Prof. Tsai 27

Linear Block Codes: Syndrome
• The generator matrix G is used in the encoding operation at 

the transmitter. 

• On the other hand, the parity-check matrix H is used in the 
decoding operation at the receiver. 

• Let r denote the 1-by-n received (row) vector that results from 
sending the code vector c over a noisy binary channel. 

– The sum of c and an error (row) vector, or error pattern, e

• The i-th element of e equals 0 (or 1) if the corresponding 
element of r is the same as (or different from) that of c. 

1, if an error has occurred in the th location

0, otherwisei

i
e


 


 r c e
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Linear Block Codes: Syndrome (Cont.)
• The receiver decodes the code vector c from r

– The decoding starts with the computation of a 1-by-(n – k) 
vector called the error-syndrome vector or syndrome

• The syndrome (length n – k) corresponding to r is defined as 

– Depends only on the error pattern and not on the 
transmitted codeword

– Equal to the sum of those rows, corresponding to the errors 
have occurred, of the transposed parity-check matrix HT

– If errors occur at locations i and j  s = hi + hj

• where hi and hj are the i-th and j-th rows of HT

Ts rH

 T T T T T     s rH c e H cH eH eH

1

T 2

n

 
   
  

h
hH

h

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Linear Block Codes: Syndrome (Cont.)
• For an error pattern e, all error patterns that differ to e by a 

codeword are ei that satisfy  ei – e = ci 

– There are 2k distinct code vectors: ci, i = 0, 1, , 2k – 1

–

– The set of vectors ei is called a coset of the code   

– A coset has exactly 2k elements (2k different ci)

– An (n, k) linear block code has 2n – k possible cosets

• 2n / 2k = 2n – k

• Each coset of the code is characterized by a unique syndrome

– All error patterns that differ by a codeword have the 
same syndrome.

, for  0,1, , 2 1k
i i i   e e c 

T T T T T
i i     s e H eH c H eH 0 eH

ei – e = ei + e = ci
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Linear Block Codes: Syndrome (Cont.)
• With the matrix H, the (n – k) elements of the syndrome s are 

linear combinations of the n elements of the error pattern e

• The syndrome ((n – k) linear equations) contains information 
about the error pattern and may be used for error detection. 

– There are more unknowns than equations ((n – k) < n)

– The set of equations is underdetermined

– No unique solution for the error pattern

T n k n k            
I Is rH r eP P

Linear
combinations 

T
n k   H I P

0 0 0,0 1 1,0 1 1,0

1 1 0,1 1 1,1 1 1,1

1 1 0, 1 1 1, 1

n k n k n k

n k n k n k

n k n k n k n k n k n k

s e e p e p e p

s e e p e p e p

s e e p e p

    

    

          

    
    

   







from In–k

e cannot be uniquely 
solved for arbitrary

error patterns  
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Hamming Distance and Hamming Weight
• Consider a pair of code vectors c1 and c2 that have the same 

number of elements. 

– The Hamming distance, d(c1, c2), is defined as the number 
of locations in which their respective elements differ.

– The Hamming weight, w(c), of a code vector c is defined as 
the number of nonzero elements in the code vector.

• The distance between c and the all-zero code vector. 

ci = 1 0 1 0 0 0 1 1 1 0 1 0 0 1 0 0
cj = 1 0 0 0 0 1 0 1 1 1 1 0 0 1 1 0
d(ci, cj) = 5

ci = 1 0 1 0 0 0 1 1 1 0 1 0 0 1 0 0
cj = 1 0 0 0 0 1 0 1 1 1 1 0 0 1 1 0
w(ci) = 7;     w(cj) = 8; 
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Decoding Strategy
• The number of possible received vectors r is 2n (n–bit codeword) 

• The number of codewords is 2k (k–bit message)     

• The whole code space is partitioned into 2k subspaces

– Centering at a codeword with a Hamming distance  t

– 2k decision regions 

All possible
received vectors

codeword

t
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Decoding Strategy (Cont.)
• Assume that the bit error probability is small enough (< 0.5) 

• The best decoding strategy is to pick the code vector 
(codeword) closest to the received vector r

– Maximum Likelihood (ML) decision rule

– Choose the codeword with the smallest number of locations 
in which their respective elements differ.

– Choose the one with the smallest Hamming distance d(ci, r) 

r  = 1 0 0 0 0 1 1 0 1 0 1 0 0 1 0 0
c1 = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,   d(c1, r) = 6


ci = 1 0 1 0 0 0 1 1 1 0 1 0 0 1 0 0,   d(ci, r) = 3
cj = 1 0 0 0 0 1 0 1 1 1 1 0 0 1 1 0,   d(cj, r) = 4

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Decoding Strategy (Cont.)
• Suppose an (n, k) linear block code is required to detect and 

correct all error patterns having a Hamming distance less 
than or equal to t. 

– Assume that a code vector ci is transmitted and the received 
vector is r = ci + e

• Correct detection: the decoder output is ĉ = ci

– Whenever the error pattern e has a Hamming weight 
(number of ‘1’ elements) w(e)  t, the output must be ĉ = ci

• Regardless of the code vector ci and the error pattern e 

– If the error pattern e has a Hamming weight w(e) > t, the 
output is generally ĉ  ci

• The errors generally cannot be corrected
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Minimum Distance Consideration
• Provided that the minimum distance of the code is equal to or 

greater than 2t + 1 

– With the ML strategy, the decoder will be able to detect and 
correct all error patterns of Hamming weight w(e)  t

• An (n, k) linear block code has the power to correct all error 
patterns of weight t or less if, and only if, 

– d(ci, cj)  2t + 1, for all ci and cj

 dmin  2t + 1

d(ci, cj)  2t + 1

r = ci + e, d(ci, cj)  2t + 1 
 d(ci + e, cj)  2t + 1 – t

 d(r, cj) > t + 1

d(ci, cj) < 2t
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Minimum Distance Consideration (Cont.)
• The minimum distance dmin of a linear block code is the 

smallest Hamming distance between any pair of codewords.

– dmin is the same as the smallest Hamming weight of the 
difference between any pair of code vectors.

– From the closure property, dmin is the smallest Hamming 
weight of the nonzero code vectors in the code.

• If ci and cj have the minimum distance dmin

• Based on the closure property, (ci + ci) = 0 and (cj + ci) = 
ck are two codewords 

• 0 and (cj + ci) = ck have the minimum distance dmin

• ck has the smallest Hamming weight dmin

– We only need to determine   dmin = min w(ck)  2t + 1 
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Syndrome Decoding–Coset Construction
• Consider an (n, k) linear block code with the 2k code vectors ci

for 1  i  2k. 

• Let r denote the received vector: one of 2n possible values 

• The receiver partitions the 2n possible vectors into 2k disjoint
subsets Di

– The i-th subset Di corresponds to code vector ci for 1  i  2k

– r is decoded into ci if it is in Di for 1  i  2k

• For the decoding to be correct, r must be in the subset that 
belongs to the code vector ci that was actually sent. 

• The construction of the 2k disjoint subsets is shown as follows:

– Step 1: The 2k code vectors are placed in a row with the all-
zero code vector c1 as the leftmost element.
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Syndrome Decoding–Coset Construction (Cont.)
– Step 2: An error pattern e2 is picked and placed under c1, 

and a second row is formed by adding e2 to ci

– Step 3: Repeat Step 2 until all the possible error patterns 
have been accounted for 

• The new error pattern must not previously appeared
D1 Di

coset

2k

2n–k

Total 2n


optimal

with the smallest weights
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Syndrome Decoding–Coset Construction (Cont.)
• The 2k columns represent the disjoint subsets Di (decision region) 

• The 2n–k rows represent the cosets of the code  

– Their first elements ej, j = 2, 3, , 2n–k, are coset leaders

• The probability of decoding error is minimized when the most 
likely error patterns are chosen as the coset leaders.

– Those with the largest probability of occurrence 

• In the case of a binary symmetric channel, the smaller the 
Hamming weight of an error pattern is, the more likely it is for 
an error to occur.

• The construction should choose the error pattern with the 
minimum Hamming weight in its coset as the coset leader

– ej: the 2n – k error patterns with the minimum weight 
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Syndrome Decoding Procedure
• The syndrome decoding procedure for linear block codes:

• 1. For the received vector r, compute the syndrome s = rHT.

• 2. Within the coset characterized by the syndrome s, identify 
the coset leader.

– The error pattern corresponding to the codeword c1 (all-zero)

– The error pattern is denoted as ê (one of 0, e2, e3, , e2n-k )  

• 3. Compute the code vector c = r + ê as the decoded output of 
the received vector r.

r  s  ê  c = r + ê
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Syndrome Decoding Procedure (Cont.)
• If the output syndrome is s  0

– ê  0  Some errors occur (error detection)

– The error correction process can be performed

– If w(e)  t, e = ê and c = r + ê is error free

– If w(e) > t, e  ê and c = r + ê contains errors

• If the output syndrome is s = 0

– ê = 0  No error occurs? Not exactly! The received vector 
may contain undetected errors. 

– No error correction process can be performed.
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Example: Hamming Codes
• Hamming codes: a family of (n, k) linear block codes that have 

the following parameters: (m  3) 

– Code length: n = 2m – 1

– Number of message bits: k = 2m – m – 1

– Number of parity-check bits: n – k = m

• Specifically for m = 3, it is the (7, 4) Hamming code with the 
error-correcting capability of t = 1 error

• The generator of this code is defined by
1 1 0 1 0 0 0

0 1 1 0 1 0 0

1 1 1 0 0 1 0

1 0 1 0 0 0 1

 
 
 
 
 
 

G





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Example: Hamming Codes (Cont.)
• The corresponding parity-check matrix is given by

• The columns of H consist of all the nonzero m-tuples for m = 3

• With k = 4, there are 2k = 16 distinct message words  

1 0 0 1 0 1 1

0 1 0 1 1 1 0

0 0 1 0 1 1 1

 
   
  

H





Message Codeword Weight Message Codeword Weight
0000
0001
0010
0011
0100
0101
0110
0111

0000000
1010001
1110010
0100011
0110100
1100101
1000110
0010111

0
3
4
3
3
4
3
4

1000
1001
1010
1011
1100
1101
1110
1111

1101000
0111001
0011010
1001011
1011100
0001101
0101110
1111111

3
4
3
4
4
3
4
7

T
n k   H I P
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Example: Hamming Codes (Cont.)
• The smallest Hamming weight of the nonzero codewords is 3.

– It follows that the minimum distance of the code is dmin = 3

– The error-correcting capability is t = 1 error

• There are 7 error patterns, each of which contains only 1 error

• The syndrome corresponds to an error pattern: s = rHT

– If the transmitted codeword is c1, the received vector r is the 
corresponding error pattern of the coset leader

• For example: r = [0010000] 

T

100
010
001

[0010000] [001]110
011
111
101

 
 
 
   
 
 
  

s rH
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Example: Hamming Codes (Cont.)
• Based on the syndrome decoding procedure, the syndrome of 

a received vector shows the location of the erroneous bit.

– If s = [001]  the third bit of r is erroneous

• Thus, adding the error pattern ê to the received vector r yields 
the correct code vector actually sent. 

– c = r + ê
Syndrome Error Pattern

000
100
010
001
110
011
111
101

0000000
1000000
0100000
0010000
0001000
0000100
0000010
0000001

No error
m = [1101]
r = [0101101]
s = [010] 
ê = [0100000]
c = [0001101]
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Homework
• You must give detailed derivations or explanations, 

otherwise you get no points. 

• Communication Systems, Simon Haykin (4th Ed.)

• 10.4;

• 10.5;

• 10.7;

• 10.8;


