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Capacity of AWGN Channel

Prof. Tsai

Capacity of AWGN Channel

* According to Shannon’s information capacity law, the
capacity of an AWGN channel is defined by

C = Blog,|1+P/(N,B) |= Blog,[1+SNR] bits/sec

— where B is the channel bandwidth in hertz and SNR is
measured at the channel output
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» Equivalently, the capacity C in bits per channel use is
Receive power Receive SNR

C'= %log2 (1 + P/’ ) = %log2 (1+SNR) bits/transmission

 In practice, we usually find that a physically realizable
encoding system must transmit data at a rate R less than the
maximum possible rate C for reliable reception.
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Signal-to-Noise Ratio Gap

* For an implementable system operating at a certain low
enough probability of symbol error Actual SNR = capacity C
\

— We introduce a signal-to-noise ratio gap
(or just gap), denoted by I', which is defined by I

o 2 -1 SNR  Attainable capacity R -
T 2R _{ 92k = equivalent SNR

— C: the capacity of the ideal encoding system

Depends on the
— R: the capacity of the corresponding encoding system

implementable encoding system

 Itis a function of the permissible probability of symbol error
P, and the encoding system of interest

» It provides a measure of the “efficiency” of an encoding system

— with respect to the ideal transmission system
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Signal-to-Noise Ratio Gap (Cont.)

« A small (large) gap corresponds to an efficient (inefficient)
encoding system

* Then, we have the attainable transmit data rate

R= %log2 (1+SNR/I') bits/transmission

 For example: the desired probability of symbol error P, =10
— For an uncoded PAM or QAM system, the gap is 8.8 dB

— Through the use of channel coding (e.g., trellis codes), the
gap may be reduced to as low as 1 dB

* Because SNR = P/N,B, the attainable data rate is defined as

1 P
R=—log,| 1+
2 gz( I'N,B

0

) bits/transmission
More power is required
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Continuous-Time Channel
Partitioning
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Continuous-Time Channel Partitioning

« Consider a linear wideband channel with an arbitrary (/)
frequency response H( f').
— Used as a single channel — distortion

— |H( f)| 1s approximated by a staircase function

. . A subchannel =
— Af: the width of each subchannel almost no distortion

 In each step, the channel may be assumed to operate as an
AWGN channel free from inter-symbol interference.

— Transmitting a wideband signal is transformed into the
transmission of a set of narrowband orthogonal signals
— Each orthogonal narrowband signal, with its own carrier,
is generated using a modulation technique, e.g., M-ary QAM
* AWGN is the only transmission impairment (with a
constant response for each subchannel) — no distortion
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Continuous-Time Channel Partitioning (Cont.)

» Data transmission over each subchannel can be optimized by
invoking Shannon’s information capacity law

— The optimization of each subchannel is performed
independently of all the others

» The need for complicated equalization of a wideband
channel (because of the non-constant response) is replaced by

— The need of demultiplexing and multiplexing

* Demultiplexing: Demultiplex the incoming data stream
into multiple subchannels

* Multiplexing: Multiplex the demodulated data from
multiple subchannels to a single data stream
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Continuous-Time Channel Partitioning (Cont.)

* A block diagram of the multichannel data transmission system

Maximum likelihood
Symbols Modulators detectors

a; —> =
> A Modl{lator Detelclor . <
>

by —>
1 (1) sin (27fy1) Data. Sll’lk
>,
Detezclor .
> by

Data Source cos ) o)
g =2
[ — AZ{hQ» Mod;lator
Multiplexer

Demultiplexer[
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Continuous-Time Channel Partitioning (Cont.)

» The incoming data stream is first applied to a demultiplexer
— Produce a set of N substreams

— Each substream represents a sequence of two-element
subsymbols, (a,, b,),n=1, 2, ---, N, for QAM modulation

» The detected data of the N substreams are finally applied to a
multiplexer to restore an output data stream

[ + + 3
AJ z Modulator = Detector Az
lbgd;- 2 2 — b,
cos (2f,t) (1) sin (2fy1) cos (2mf,t) b(1) sin (2f,1)
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Geometric Signal-to-Noise Ratio

* In the multichannel transmission system, each subchannel is
characterized by an SNR of its own.

— However, it is highly desirable to derive a single
performance measure of the entire system

* We assume that all of the subchannels are represented by one-
dimensional constellations

1
. '=—log, (1+P/o’
— The average channel capacity is ¢ 2 ng( +Plo )

R—iiR —Lilo 1+ FLl= lo ﬁ 1+ k |
NETTaNE R e 2 e T
N e Receive power
—log2 H[ j bits/transmission
[ o,
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Geometric Signal-to-Noise Ratio (Cont.)

* Let (SNR), .1 denote the overall SNR of the entire system.
— Then, we may express the rate R as

I (SNR) . .
R= Elog2 1+ - overll | bits/transmission

» Accordingly, the overall SNR is

N P /N
(SNR)overall = F[H(l-'_ ”2 j _I:I
n=1

I'o

n

» Ifthe SNR is large enough, we have the approximation

N p I/N
(SNR)overall ~ ]il[( : ]

2
O-i’l
— It is the geometric mean of the SNRs of the individual
subchannels and is independent of the gap I'.
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Loading of the Multichannel
Transmission System
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Power Loading

Define the magnitude response g, = |H(f, ), n=1,2, -, N
Assuming that the number of subchannels N is large enough
— g, 1s a constant over the entire bandwidth Af

— The average channel capacity is _ Transmit power

. 2

| & 2p ‘Receive power: g, P,
R = —Z:log2 1+5272° | bits/transmission
2N 5 I'o

2
n

— where g, and I are usually fixed; noise variance is Af'N,,, Vn

Goal: Optimize the overall bit rate R through a proper allocation
of the total transmit power among the various subchannels

— Subject to the total transmit power constraint

N
P=>P
n=l1
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Power Loading (Cont.)

Maximize the bit rate R through an optimal sharing of the
total transmit power P between the N subchannels

— Subject to the total transmit power constraint P

Through the method of Lagrange multipliers, the solution to
the constrained optimization problem is

2
Pn_i_FO'n =K, n=1,2,---,N SX(fk):K_ SN( )

2

2
En \ gain and noise power ‘H (fk )‘

— where K is a prescribed constant to meet the total transmit
power constraint P

The process of allocating the transmit power P to the individual
subchannels is called loading.
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Water-Filling Interpretation

» The optimal power allocation must satisfy the condition

2
P+l% K, a=12,N
% Not feasible N

n

* Consider the case with N=6
g G G4

— The gap I is assumed to be
constant over all subchannels

— The average noise power is &
setto 02 =N, Af=1 g

»  We make the following observations:
— With ¢,2 = 1, the sum of allocated

power P, and the scaled noise R R R
| W 2 1t 81 82 83 &2 g g
power 1 /g = 1S €qual to a ] > 3 1 : c
constant K fOI' four subchannels. Index of subchannel, n
17
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Water-Filling Interpretation (Cont.)

— The sum of power allocations to these four subchannels
consumes all the available transmit power P.
— The remaining two subchannels have been eliminated from

consideration
* Because they would each

require negative power to

satisfy the condition .

(1e., P,<0) 2
The channel response g, is too small L~ B e
= The scaled noise power ['/g 2 is Aé//
very large r|jofcypocfrjr
= Allocating power to these two $1 [ 82 | &5 | s | &5 | 86
channels is inefficient 1 2 3 4 5 6

Index of subchannel, »n
18
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Water-Filling Interpretation (Cont.)

The optimum solution for loading is referred to as water-filling

solution

This terminology follows from analogy of our optimization

problem with

— A fixed amount of water—standing for transmit power

— Being poured into a container with a number of connected

regions

— Each having a different depth—standing for noise power

In such a scenario, the water distributes itself in such a way that

— A constant water level is attained across the whole

container, hence the term “water filling”
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Water-Filling Inte

3

If the same amount of power .

1s added, the increment in the

capacity will be larger/smaller;o}

in the low/high SNR region
For example, if the SNR is
increased by 3 dB
— The required additional
power is less in the low
SNR region than that in
the high SNR region
— The increment in capacity
in the low SNR region is
larger than that in the high

B

=
g

Bandwidth efficiency,

SNR region o1
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Region for which

Region for wf
R,<C

Large R,
increment

rpretation (Cont.)

ity boundary
hich R,=C

SNR + 3dB:
less power
increment

24 30 36

%% SNR + 3dB:
more power

increment
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Process of Loading

» The allocation of the fixed transmit power P among the various
subchannels can be formularized as follows:

— There are a total of (N + 1) unknowns and (N + 1) equations

F 2
P+—r=K, n=1,2,--,N
; Unknowns:
N P,and K
b=
| L olfpl | P

11
1 0 - 0 —-1||P| |-Tco’/g’
0 1 To’/gl |=>Mu=c

-
|
(U
s
Il

00 - 1 -1||K| |-To’/gs
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Process of Loading (Cont.)

* Multiplying the inverse of M on both sides of the equation
— The unknowns P, P,, ---, Py, and K can be obtained

P |=u=M"c

— Kis always positive | K |
— It 1s possible for some of the P, values to be negative
* In such a situation, the solution is incorrect

* Discard the subchannels with negative P, values, and
resolve the problem with reduced number of subchannels

— If all the P, values are positive, the solution is correct
_
22
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Example

* Consider a linear channel whose squared magnitude response
|H( f)|? has the piecewise linear form

» To simplify the example, we have set the gap I' = 1 and the
noise variance o> = 1

* Under this set of values, we have

H(f) ? 2
R+P,=P P+-—2r=K
R-K=-1; P—-K=-1fI 10 g

* Solving the three equations
for P,, P,, and K

B =(P-1+1/1)/2 N L
P =(P+1-1/1)/2 | |
| |
K=(P+1+1/1)/2 0 hn % 4
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Example (Cont.)

» Since 0 </< 1, it follows that P, >0
* But it is possible for P, to be negative

— Ithappens if [<1/(P+1) ok 05
— Correspondingly, P, exceeds the transmit |-
power P (P, > P) 81~

» Therefore, it follows that, in this example,

the only acceptable solution is to have |
/(P+1)<I<I. L
* LetP=10and/=0.1 N
— The desired solutionis P =9.5 21
P,=05 I
K =105 T

Index of subchannel n
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Orthogonal Frequency Division
Multiplexing (OFDM)
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OFDM Concept

* Orthogonal frequency division multiplexing (OFDM) is a
form of multi-carrier modulation.

— OFDM is particularly well suited for high data-rate
transmission over delay-dispersive channels.

» Specifically, a large number of closely spaced orthogonal
subcarriers (tones) is used to support the transmission.

— The incoming data stream is divided into a number of low
data-rate sub-streams, one for each subcarrier

 In addition, two other changes have to be made for OFDM:

— In the transmitter, an upconverter is included after the DAC
to translate the signal to the transmission band
— In the receiver, a downconverter is included before the

ADC to translate the signal to the baseband
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OFDM Concept (Cont.)

* Orthogonal frequency division multiplexing (OFDM) is a
promising technique because of its

— High bandwidth efficiency and
— Resistance to multipath fading

* Orthogonality is maintained among the subcarriers

« Narrowband transmission for each digitally modulated signal
Transmission Band
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OFDM Concept (Cont.)

* However, the following characteristics distinguish OFDM from
a straightforward multi-carrier extension:

— The use of a typically very large number of relatively
narrowband subcarriers (e.g., several hundred subcarriers)

— Simple rectangular pulse shaping (time-domain) is used
= A sinc-square-shaped per-subcarrier spectrum

— Tight frequency-domain Sub-carrier

[ sin(zf/Af) T
packing of the subcarriers spectrum

(zf18f)

= A subcarrier spacing Af= 1/T,,,
T, .. 1s the per-subcarrier

sym
modulation-symbol duration

—AAf-3AF-2Af -Af 0 Af 2Af 3Af 4Af
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OFDM Transmitter/Receiver

* Block diagrams of transmitter/receiver for a 36 Mbits/s system

_ _L: >
1 —
Input Serial- 2 i ) | ol
bir?ary o L | 16:0am o 7> 64-point [, | Parallel Dlil)t.al Transmitted
> Cror iy > 471 - _ | inverse |- to.- — = signal
data correction| |modulator parallel a2 FET P serial analog
stream | encoder converter = L»-| converter [ | converter
— i
>
36 x4/3= 48 /4= 12 /48 = Subcarriers 250 Data stream
Mbit/s Mbit/s MHz 250 kHz kHz X 64 = 16 MHz
—_ —
- — :
. . Forward Estimate
Received | Analog- Serial-to- | 64;;5’rmt [>-| Parallel- 16-QAM error- of original
: |-> to-d|g|ta| = parallel o o to_ser|a| —— de- == . b
signa rt converter | . [algorithm | : modulator correction inacy
SRINEETESS i~ N converter decoder | data stream
—_ —
> >
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OFDM Implementation

* OFDM modulation by means of IFFT processing

Ay

e OFDM demodulation

g0

r(t)

by

0

mecan
’

Xo

x(1)

s of FFT processing
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OFDM Transmission

Frequency domain Time domain Frequency domain

A 4

IFFT

A 4

A4

FFT

Y

Modulator Channel Demodulator

Transmitted Data for 480 Mbps mode

Packet Sync
—— Frame Sync
301 —— Channel Est

—— Payload

5 10 15 20 25 30
Time (in microseconds) ———>

Transmitted Data (I channel)
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Homework

* You must give detailed derivations or explanations,
otherwise you get no points.

« Communication Systems, Simon Haykin (4t Ed.)
* 6.43;
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