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Capacity of AWGN Channel
• According to Shannon’s information capacity law, the 

capacity of an AWGN channel is defined by

– where B is the channel bandwidth in hertz and SNR is 
measured at the channel output

• Equivalently, the capacity C in bits per channel use is 

• In practice, we usually find that a physically realizable 
encoding system must transmit data at a rate R less than the 
maximum possible rate C for reliable reception. 
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Signal-to-Noise Ratio Gap
• For an implementable system operating at a certain low 

enough probability of symbol error  

– We introduce a signal-to-noise ratio gap
(or just gap), denoted by , which is defined by 

– C: the capacity of the ideal encoding system

– R: the capacity of the corresponding                   
implementable encoding system

• It is a function of the permissible probability of symbol error 
Pe and the encoding system of interest

• It provides a measure of the “efficiency” of an encoding system 

– with respect to the ideal transmission system
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Signal-to-Noise Ratio Gap (Cont.)
• A small (large) gap corresponds to an efficient (inefficient) 

encoding system

• Then, we have the attainable transmit data rate

• For example: the desired probability of symbol error Pe = 10–6

– For an uncoded PAM or QAM system, the gap is 8.8 dB

– Through the use of channel coding (e.g., trellis codes), the 
gap may be reduced to as low as 1 dB

• Because SNR = P/N0B, the attainable data rate is defined as
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Continuous-Time Channel Partitioning
• Consider a linear wideband channel with an arbitrary 

frequency response H( f ). 
– Used as a single channel  distortion
– |H( f )| is approximated by a staircase function 
– f: the width of each subchannel

• In each step, the channel may be assumed to operate as an 
AWGN channel free from inter-symbol interference. 
– Transmitting a wideband signal is transformed into the 

transmission of a set of narrowband orthogonal signals
– Each orthogonal narrowband signal, with its own carrier, 

is generated using a modulation technique, e.g., M-ary QAM
• AWGN is the only transmission impairment (with a 

constant response for each subchannel)  no distortion

A subchannel 
almost no distortion

H( f )
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Continuous-Time Channel Partitioning (Cont.)
• Data transmission over each subchannel can be optimized by 

invoking Shannon’s information capacity law

– The optimization of each subchannel is performed 
independently of all the others

• The need for complicated equalization of a wideband 
channel (because of the non-constant response) is replaced by 

– The need of demultiplexing and multiplexing

• Demultiplexing: Demultiplex the incoming data stream 
into multiple subchannels

• Multiplexing: Multiplex the demodulated data from 
multiple subchannels to a single data stream  
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Continuous-Time Channel Partitioning (Cont.)
• A block diagram of the multichannel data transmission system

Data Source

Demultiplexer

Data Sink

Multiplexer
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Continuous-Time Channel Partitioning (Cont.)
• The incoming data stream is first applied to a demultiplexer

– Produce a set of N substreams

– Each substream represents a sequence of two-element
subsymbols, (an, bn), n = 1, 2, , N, for QAM modulation

• The detected data of the N substreams are finally applied to a 
multiplexer to restore an output data stream 
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Geometric Signal-to-Noise Ratio
• In the multichannel transmission system, each subchannel is 

characterized by an SNR of its own. 

– However, it is highly desirable to derive a single 
performance measure of the entire system 

• We assume that all of the subchannels are represented by one-
dimensional constellations 

– The average channel capacity is
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Geometric Signal-to-Noise Ratio (Cont.)
• Let (SNR)overall denote the overall SNR of the entire system.

– Then, we may express the rate R as 

• Accordingly, the overall SNR is 

• If the SNR is large enough, we have the approximation  

– It is the geometric mean of the SNRs of the individual 
subchannels and is independent of the gap . 
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Power Loading
• Define the magnitude response gn = |H( fn )|, n = 1, 2, , N
• Assuming that the number of subchannels N is large enough  

– gn is a constant over the entire bandwidth f 

– The average channel capacity is 

– where gn and  are usually fixed; noise variance is f N0, n

• Goal: Optimize the overall bit rate R through a proper allocation 
of the total transmit power among the various subchannels

– Subject to the total transmit power constraint
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Power Loading (Cont.)
• Maximize the bit rate R through an optimal sharing of the 

total transmit power P between the N subchannels

– Subject to the total transmit power constraint P

• Through the method of Lagrange multipliers, the solution to 
the constrained optimization problem is

– where K is a prescribed constant to meet the total transmit 
power constraint P

• The process of allocating the transmit power P to the individual 
subchannels is called loading. 
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Water-Filling Interpretation
• The optimal power allocation must satisfy the condition

• Consider the case with N = 6

– The gap  is assumed to be                                              
constant over all subchannels  

– The average noise power is                                                             
set to  n

2 = N0 f = 1 

• We make the following observations:

– With n
2 = 1, the sum of allocated

power Pn and the scaled noise
power /gn

2 is equal to a                                                  
constant K for four subchannels.
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Water-Filling Interpretation (Cont.)
– The sum of power allocations to these four subchannels 

consumes all the available transmit power P.

– The remaining two subchannels have been eliminated from 
consideration

• Because they would each                                          
require negative power to                                            
satisfy the condition                                                          
(i.e., Pn < 0)

The channel response gn is too small
 The scaled noise power /gn

2 is 
very large
Allocating power to these two 
channels is inefficient
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Water-Filling Interpretation (Cont.)
• The optimum solution for loading is referred to as water-filling 

solution

• This terminology follows from analogy of our optimization 
problem with 

– A fixed amount of water—standing for transmit power

– Being poured into a container with a number of connected 
regions 

– Each having a different depth—standing for noise power  

• In such a scenario, the water distributes itself in such a way that 

– A constant water level is attained across the whole 
container, hence the term “water filling”
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Water-Filling Interpretation (Cont.)
• If the same amount of power 

is added, the increment in the 
capacity will be larger/smaller  
in the low/high SNR region

• For example, if the SNR is 
increased by 3 dB
– The required additional 

power is less in the low 
SNR region than that in 
the high SNR region

– The increment in capacity 
in the low SNR region is 
larger than that in the high 
SNR region

Large Rb
increment

Small Rb
increment

SNR + 3dB:
less power
increment

SNR + 3dB:
more power
increment
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Process of Loading
• The allocation of the fixed transmit power P among the various 

subchannels can be formularized as follows: 

– There are a total of (N + 1) unknowns and (N + 1) equations
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Process of Loading (Cont.)
• Multiplying the inverse of M on both sides of the equation

– The unknowns P1, P2, , PN, and K can be obtained

– K is always positive

– It is possible for some of the Pn values to be negative

• In such a situation, the solution is incorrect

• Discard the subchannels with negative Pn values, and 
resolve the problem with reduced number of subchannels

– If all the Pn values are positive, the solution is correct

1

2
1

3

P

P

P

K



 
 
 
  
 
 
  

u = M c





Prof. Tsai 23

Example
• Consider a linear channel whose squared magnitude response 

|H( f )|2 has the piecewise linear form 

• To simplify the example, we have set the gap  = 1 and the 
noise variance n

2 = 1  

• Under this set of values, we have

• Solving the three equations                                                                  
for P1, P2, and K
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Example (Cont.)
• Since 0 < l < 1, it follows that P1 > 0   

• But it is possible for P2 to be negative

– It happens if  l < 1/(P + 1)   

– Correspondingly, P1 exceeds the transmit                        
power P (P1 > P)

• Therefore, it follows that, in this example,                                
the only acceptable solution is to have                                          
l/(P + 1) < l < 1. 

• Let P = 10 and l = 0.1 

– The desired solution is
1
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Orthogonal Frequency Division 
Multiplexing (OFDM)
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OFDM Concept
• Orthogonal frequency division multiplexing (OFDM) is a 

form of multi-carrier modulation.

– OFDM is particularly well suited for high data-rate 
transmission over delay-dispersive channels. 

• Specifically, a large number of closely spaced orthogonal 
subcarriers (tones) is used to support the transmission. 

– The incoming data stream is divided into a number of low 
data-rate sub-streams, one for each subcarrier 

• In addition, two other changes have to be made for OFDM:

– In the transmitter, an upconverter is included after the DAC 
to translate the signal to the transmission band

– In the receiver, a downconverter is included before the 
ADC to translate the signal to the baseband



Prof. Tsai 27

OFDM Concept (Cont.)
• Orthogonal frequency division multiplexing (OFDM) is a 

promising technique because of its 

– High bandwidth efficiency and 

– Resistance to multipath fading 

• Orthogonality is maintained among the subcarriers

• Narrowband transmission for each digitally modulated signal

ff

Transmission Band
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OFDM Concept (Cont.)
• However, the following characteristics distinguish OFDM from 

a straightforward multi-carrier extension:

– The use of a typically very large number of relatively 
narrowband subcarriers (e.g., several hundred subcarriers)

– Simple rectangular pulse shaping (time-domain) is used 

A sinc-square-shaped per-subcarrier spectrum

– Tight frequency-domain                                               
packing of the subcarriers 

A subcarrier spacing Δf = 1/Tsym,                                                    
Tsym is the per-subcarrier                                                   
modulation-symbol duration
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OFDM Transmitter/Receiver
• Block diagrams of transmitter/receiver for a 36 Mbits/s system

 4/3 = /4 = /48 =
 64 =
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OFDM Implementation
• OFDM modulation by means of IFFT processing

• OFDM demodulation by means of FFT processing
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OFDM Transmission

IFFT Channel FFT

Frequency domain

Modulator Demodulator

Frequency domainTime domain
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Homework
• You must give detailed derivations or explanations, 

otherwise you get no points. 

• Communication Systems, Simon Haykin (4th Ed.)

• 6.43;


