通訊系統(II)

國立清華大學電機系暨通訊工程研究所 蔡育仁 台達館821室

Tel: 62210

E-mail: yrtsai@ee.nthu.edu.tw

Prof. Tsai

Chapter 8 Multichannel Modulation

Capacity of AWGN Channel

Prof. Tsai

Capacity of AWGN Channel

According to Shannon's information capacity law, the capacity of an AWGN channel is defined by

$$C = B \log_2 \left[1 + P/(N_0 B) \right] = B \log_2 \left[1 + SNR \right]$$
 bits/sec

- where B is the channel bandwidth in hertz and SNR is measured at the channel output
- Ch. 7 Equivalently, the capacity C in bits per channel use is

Receive power $C' = \frac{1}{2}\log_2(1 + P/\sigma^2) = \frac{1}{2}\log_2(1 + SNR)$ bits/transmission

In practice, we usually find that a physically realizable encoding system must transmit data at a rate R less than the maximum possible rate C for **reliable** reception.

Signal-to-Noise Ratio Gap

- For an **implementable** system operating at a certain low enough probability of symbol error Actual SNR \Rightarrow capacity C
 - We introduce a **signal-to-noise ratio gap** (or just **gap**), denoted by Γ, which is defined by $\Gamma = \frac{2^{2^C} 1}{2^{2^R} 1} = \frac{\text{SNR}}{2^{2^R} 1}$ Attainable capacity R \Rightarrow equivalent SNR
 - C: the capacity of the ideal encoding system

Depends on the encoding system

- R: the capacity of the corresponding implementable encoding system
- It is a function of the permissible probability of symbol error $P_{\rm e}$ and the encoding system of interest
- It provides a measure of the "efficiency" of an encoding system
 - with respect to the ideal transmission system

Prof. Tsai 5

Signal-to-Noise Ratio Gap (Cont.)

- A small (large) gap corresponds to an efficient (inefficient) encoding system
- Then, we have the attainable transmit data rate

$$R = \frac{1}{2}\log_2(1 + \text{SNR}/\Gamma)$$
 bits/transmission

- For example: the desired **probability of symbol error** $P_{\rm e} = 10^{-6}$
 - For an uncoded PAM or QAM system, the gap is **8.8 dB**
 - Through the use of channel coding (e.g., trellis codes), the gap may be reduced to as low as 1 dB
- Because SNR = P/N_0B , the attainable **data rate** is defined as

$$R = \frac{1}{2}\log_2\left(1 + \frac{P}{\Gamma N_0 B}\right)$$
 bits/transmission

More power is required

Continuous-Time Channel **Partitioning**

Prof. Tsai

Continuous-Time Channel Partitioning

- Consider a linear wideband channel with an arbitrary H(f)frequency response H(f).
 - Used as a single channel \rightarrow distortion
 - -|H(f)| is approximated by a **staircase** function
 - A subchannel \(\perc{1}{2}\) $-\Delta f$: the width of each **subchannel**
- almost no distortion In each step, the channel may be assumed to operate as an
- AWGN channel free from inter-symbol interference.
 - Transmitting a wideband signal is transformed into the transmission of a set of narrowband orthogonal signals
 - Each orthogonal narrowband signal, with its own carrier, is generated using a modulation technique, e.g., M-ary QAM
 - AWGN is the only transmission impairment (with a **constant response** for each subchannel) \rightarrow no distortion

Continuous-Time Channel Partitioning (Cont.)

- Data transmission over each subchannel can be optimized by invoking Shannon's information capacity law
 - The optimization of each subchannel is performed independently of all the others
- The need for **complicated equalization** of a **wideband channel** (because of the **non-constant** response) is replaced by
 - The need of demultiplexing and multiplexing
 - **Demultiplexing**: Demultiplex the incoming data stream into multiple subchannels
 - **Multiplexing**: Multiplex the demodulated data from multiple subchannels to a single data stream

Prof. Tsai

Continuous-Time Channel Partitioning (Cont.)

• A block diagram of the multichannel data transmission system

Continuous-Time Channel Partitioning (Cont.)

- The incoming data stream is first applied to a **demultiplexer**
 - Produce a set of N substreams
 - Each substream represents a sequence of **two-element** subsymbols, (a_n, b_n) , $n = 1, 2, \dots, N$, for **QAM modulation**
- The detected data of the N substreams are finally applied to a multiplexer to restore an output data stream

Prof. Tsai 11

Geometric Signal-to-Noise Ratio

- In the multichannel transmission system, each subchannel is characterized by an SNR of its own.
 - However, it is highly desirable to derive a single performance measure of the entire system
- We assume that all of the subchannels are represented by onedimensional constellations $C' = \frac{1}{2}\log_2\left(1 + P/\sigma^2\right)$
 - The average channel capacity is

$$R = \frac{1}{N} \sum_{n=1}^{N} R_n = \frac{1}{2N} \sum_{n=1}^{N} \log_2 \left(1 + \frac{P_n}{\Gamma \sigma_n^2} \right) = \frac{1}{2N} \log_2 \left[\prod_{n=1}^{N} \left(1 + \frac{P_n}{\Gamma \sigma_n^2} \right) \right]$$

$$= \frac{1}{2} \log_2 \left[\prod_{n=1}^{N} \left(1 + \frac{P_n}{\Gamma \sigma_n^2} \right) \right]^{\frac{1/N}{N}}$$
 Receive power bits/transmission

Geometric Signal-to-Noise Ratio (Cont.)

- Let (SNR)_{overall} denote the **overall SNR** of the entire system.
 - Then, we may express the rate R as

$$R = \frac{1}{2}\log_2\left[1 + \frac{(SNR)_{overall}}{\Gamma}\right]$$
 bits/transmission

• Accordingly, the overall SNR is

$$(SNR)_{overall} = \Gamma \left| \prod_{n=1}^{N} \left(1 + \frac{P_n}{\Gamma \sigma_n^2} \right)^{1/N} - 1 \right|$$

• If the SNR is large enough, we have the approximation

$$(SNR)_{overall} \approx \prod_{n=1}^{N} \left(\frac{P_n}{\sigma_n^2}\right)^{1/N}$$

– It is the **geometric mean** of the SNRs of the individual subchannels and is **independent** of the gap Γ .

Prof. Tsai

Loading of the Multichannel Transmission System

Power Loading

- Define the magnitude response $g_n = |H(f_n)|, n = 1, 2, \dots, N$
- Assuming that the number of subchannels N is large enough
 - $-g_n$ is a **constant** over the entire bandwidth Δf
 - The average channel capacity is _ Transmit power

$$R = \frac{1}{2N} \sum_{n=1}^{N} \log_2 \left(1 + \frac{g_n^2 P_n}{\Gamma \sigma_n^2} \right)$$
 Receive power: $g_n^2 P_n$ bits/transmission

- where g_n and Γ are usually fixed; noise variance is $\Delta f N_0$, $\forall n$
- Goal: Optimize the overall bit rate *R* through a proper allocation of the **total transmit power** among the various subchannels
 - Subject to the total transmit power constraint

$$P = \sum_{n=1}^{N} P_n$$

Prof. Tsai

Power Loading (Cont.)

- **Maximize** the bit rate *R* through an **optimal sharing** of the total transmit power *P* between the *N* subchannels
 - Subject to the total transmit power constraint P
- Through the **method of Lagrange multipliers**, the solution to the **constrained optimization problem** is

$$P_n + \frac{\Gamma \sigma_n^2}{g_n^2} = K, \quad n = 1, 2, \dots, N$$
gain and noise power
$$S_X(f_k) = K - \frac{S_N(f_k)}{|H(f_k)|^2}$$

- where K is a prescribed constant to meet the total transmit power constraint P
- The process of allocating the transmit power *P* to the individual subchannels is called **loading**.

Water-Filling Interpretation

• The optimal power allocation must satisfy the condition

 $P_n + \frac{\Gamma \sigma_n^2}{g_n^2} = K, \quad n = 1, 2, \dots, N$

- Consider the case with N = 6
 - The gap Γ is assumed to be constant over all subchannels
 - The average noise power is set to $\sigma_n^2 = N_0 \Delta f = 1$
- We make the following observations:
 - With $\sigma_n^2 = 1$, the sum of allocated **power** P_n and the scaled noise **power** Γ/g_n^2 is equal to a constant K for **four subchannels**.

Prof. Tsai

Water-Filling Interpretation (Cont.)

- The sum of power allocations to these four subchannels consumes all the available transmit power P.
- The remaining two subchannels have been eliminated from

consideration

• Because they would each require **negative power** to satisfy the condition (i.e., $P_n < 0$)

The channel response g_n is **too small** \Rightarrow The **scaled noise power** Γ/g_n^2 is **very large**

⇒ Allocating power to these two channels is **inefficient**

Water-Filling Interpretation (Cont.)

- The optimum solution for **loading** is referred to as **water-filling** solution
- This terminology follows from analogy of our optimization problem with
 - A fixed amount of water—standing for transmit power
 - Being poured into a container with a number of connected regions
 - Each having a different depth—standing for noise power
- In such a scenario, the water distributes itself in such a way that
 - A constant water level is attained across the whole container, hence the term "water filling"

Prof. Tsai

Water-Filling Interpretation (Cont.)

- If the same amount of power is added, the increment in the capacity will be larger/smaller₁₀ in the low/high SNR region
- For example, if the SNR is increased by 3 dB
 - ncreased by 3 dB

 The required additional power is less in the low SNR region than that in the high SNR region
 - The increment in capacity in the low SNR region is larger than that in the high SNR region

Process of Loading

- The allocation of the fixed transmit power *P* among the various subchannels can be formularized as follows:
 - There are a total of (N + 1) unknowns and (N + 1) equations

$$P_{n} + \frac{\Gamma \sigma_{n}^{2}}{g_{n}^{2}} = K, \quad n = 1, 2, \dots, N$$

$$\sum_{n=1}^{N} P_{n} = P$$
Unknowns:
$$P_{n} \text{ and } K$$

$$\begin{bmatrix} 1 & 1 & \cdots & 1 & 0 \\ 1 & 0 & \cdots & 0 & -1 \\ 0 & 1 & \cdots & 0 & -1 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & -1 \end{bmatrix} \begin{bmatrix} P_1 \\ P_2 \\ P_3 \\ \vdots \\ K \end{bmatrix} = \begin{bmatrix} P \\ -\Gamma \sigma^2 / g_1^2 \\ -\Gamma \sigma^2 / g_2^2 \\ \vdots \\ -\Gamma \sigma^2 / g_N^2 \end{bmatrix} \Rightarrow \mathbf{M} \mathbf{u} = \mathbf{c}$$

Prof. Tsai

Process of Loading (Cont.)

- Multiplying the inverse of **M** on both sides of the equation
 - The unknowns P_1, P_2, \dots, P_N , and K can be obtained

$$\begin{bmatrix} P_1 \\ P_2 \\ P_3 \\ \vdots \\ K \end{bmatrix} = \mathbf{u} = \mathbf{M}^{-1} \mathbf{c}$$

- -K is always positive
- It is possible for some of the P_n values to be **negative**
 - In such a situation, the solution is **incorrect**
 - **Discard** the subchannels with negative P_n values, and **resolve** the problem with reduced number of subchannels
- If all the P_n values are **positive**, the solution is **correct**

Example

- Consider a linear channel whose squared magnitude response $|H(f)|^2$ has the **piecewise linear form**
- To simplify the example, we have set the gap $\Gamma = 1$ and the noise variance $\sigma_n^2 = 1$

Under this set of values, we have

Solving the three equations for P_1 , P_2 , and K

$$P_{1} = (P-1+1/l)/2$$

$$P_{2} = (P+1-1/l)/2$$

$$K = (P+1+1/l)/2$$

 $H(f)^{-2}$

Prof. Tsai 23

Example (Cont.)

- Since 0 < l < 1, it follows that $P_1 > 0$
- But it is possible for P_2 to be **negative**
 - It happens if l < 1/(P+1)
 - Correspondingly, P_1 exceeds the transmit power $P(P_1 > P)$
- Therefore, it follows that, in this example, the only acceptable solution is to have 1/(P+1) < l < 1.
- Let P = 10 and l = 0.1

The desired solution is

$$P_1 = 9.5$$

$$P_2 = 0.5$$

$$K = 10.5$$

Orthogonal Frequency Division Multiplexing (OFDM)

Prof. Tsai

OFDM Concept

- Orthogonal frequency division multiplexing (OFDM) is a form of multi-carrier modulation.
 - OFDM is particularly well suited for high data-rate transmission over delay-dispersive channels.
- Specifically, a large number of closely spaced **orthogonal subcarriers (tones)** is used to support the transmission.
 - The incoming data stream is divided into a number of low data-rate sub-streams, one for each subcarrier
- In addition, two other changes have to be made for OFDM:
 - In the transmitter, an upconverter is included after the DAC to translate the signal to the transmission band
 - In the receiver, a downconverter is included before the ADC to translate the signal to the baseband

OFDM Concept (Cont.)

- Orthogonal frequency division multiplexing (OFDM) is a promising technique because of its
 - High bandwidth efficiency and
 - Resistance to multipath fading
- Orthogonality is maintained among the subcarriers
- Narrowband transmission for each digitally modulated signal

Prof. Tsai

OFDM Concept (Cont.)

- However, the following characteristics distinguish OFDM from a straightforward multi-carrier extension:
 - The use of a typically very large number of relatively narrowband subcarriers (e.g., several hundred subcarriers)
 - Simple rectangular pulse shaping (time-domain) is used
 - ⇒ A sinc-square-shaped per-subcarrier spectrum

OFDM Transmitter/Receiver

Block diagrams of transmitter/receiver for a 36 Mbits/s system

Prof. Tsai

OFDM Implementation

• OFDM modulation by means of IFFT processing

• OFDM demodulation by means of FFT processing

OFDM Transmission

Prof. Tsai

Homework

- You must give detailed derivations or explanations, otherwise you get no points.
- Communication Systems, Simon Haykin (4th Ed.)

6.43;