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Introduction
• In communications, information theory deals with modeling 

and analysis of a communication system 

• In particular, it provides answers to two fundamental questions: 

– Signal Source: What is the irreducible complexity, below 
which a signal cannot be compressed?

– Channel: What is the ultimate transmission rate for 
reliable communication over a noisy channel?

• The answers to these two questions lie in the entropy of a 
source and the capacity of a channel, respectively:

– Entropy: the probabilistic behavior of a source of 
information

– Capacity: the intrinsic ability of a channel to convey 
information (related to the noise characteristics) 
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Introduction
• If the entropy of the source is less than the capacity of the 

channel, then, ideally, error-free communication over the 
channel can be achieved. 

• If the entropy of the source is more than the capacity of the 
channel, then, error-free communication over the channel is 
impossible.

Information
source Channel Information

sink

Noise

CapacityEntropy
Error-free
reception

Prof. Tsai

Uncertainty, Information and 
Entropy
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Entropy
• Suppose that a probabilistic experiment involves observation 

of the output emitted by a discrete source during every 
signaling interval. 

• A sample of the source output is denoted by the discrete 
random variable S
– with the fixed finite alphabet  = {s0, s1, , sK–1}

– with probabilities

• We assume that the symbols emitted by the source during 
successive signaling intervals are statistically independent. 

• How much information is produced by such a source? 

– The amount of information is closely related to that of 
uncertainty

  , 0,1, , 1k kP S s p k K   
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Entropy (Cont.)
• Consider the event S = sk, describing the emission of symbol sk

by the source with probability pk

– If the probability pk = 1 and pi = 0 for all i  k, then 

• There is no information when symbol sk is emitted 

– If 0 < pk < pi < 1, then there is more information when 
symbol sk is emitted than when symbol si is emitted 

• The occurrence of a rare event implies more information

– Before the event S = sk occurs, there is an amount of 
uncertainty.  After the occurrence of the event S = sk, 
there is gain in the amount of information. 

• Most importantly, the amount of information is related to the 
inverse of the probability of occurrence of the event S = sk.
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Entropy (Cont.)
• The amount of information gained after observing the event S 

= sk, which occurs with probability pk, is defined as 

• This definition exhibits the following important properties:

– Property 1:

– Property 2: 

• The occurrence of an event never brings about a loss of 
information

– Property 3: 

– Property 4 (the additive property): If sk and sl are 
statistically independent 

   log 1 , 0,1, , 1k kI s p k K  

  0, for  1k kI s p 
  0, for  0 1k kI s p  

    , for  k i k iI s I s p p 

     ,k l k lI s s I s I s 
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Entropy (Cont.)
• The base of the logarithm specifies the units of information 

measure (e.g., in bits)

• For binary signaling and with the information measure in bits

– We use a logarithm of base 2

– When pk = 1/2, we have I(sk) = 1 bit 

• One bit is the amount of information that we gain when one of 
two equally likely (i.e., equiprobable) events occurs.

– s0 = “0” with p0 = 0.5 and s1 = “1” with p1 = 0.5 

     2 2log 1 log , 0,1, , 1k k kI s p p k K    
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Entropy (Cont.)
• During an arbitrary signaling interval, the amount of 

information I(sk) depends on the symbol sk emitted by the 
source at the time. 

• I(sk) is a discrete random variable that takes on the values 
I(s0), I(s1), , I(sK–1) with probabilities p0, p1, , pK–1

• The entropy of the source is defined as the expectation of I(sk) 
over all the probable values taken by the random variable S 

– It is a measure of the average information content per 
source symbol

• H(S) is independent of the alphabet ; it depends only on the 
probabilities of the symbols in the alphabet  of the source.

       
1 1

2
0 0

log 1
K K

k k k k k
k k

H S E I s p I s p p
 

 

      
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Properties of Entropy
• The entropy of the discrete random variable S is bounded

– where K is the number of symbols in the alphabet 

• H(S) = 0: if, and only if, the probability pk = 1 for some k, and 
the remaining probabilities in the set are all zero

– This lower bound corresponds to no uncertainty

• H(S) = log2K: if, and only if, pk = 1/K                                       
for all k (i.e., all the symbols in the                                         
source alphabet  are equiprobable)

– This upper bound corresponds to                                    
maximum uncertainty

• The proof needs the inequality:

  20 logH S K 

ln 1, 0x x x  
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Example: Entropy of Binary Memoryless Source
• Consider a binary source for which symbol 0 occurs with 

probability p0 and symbol 1 with probability p1 = 1 – p0

• We assume that the source is memoryless so that successive 
symbols are statistically independent

•

– When p0 = 0, H(S) = 0 

• xlog2 x  0 as x  0

– When p0 = 1, H(S) = 0 

– H(S) attains its maximum value                                                  
Hmax = 1 bit when p1 = p0 = 1/2 

– H(S) is symmetric about p0 = 1/2

 
   

0 2 0 1 2 1

0 2 0 0 2 0

log log
log 1 log 1

H S p p p p
p p p p

  
    
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Extension of a Discrete Memoryless Source
• For high order modulation, one modulation                       

symbol may contains multiple source symbols
– To consider blocks rather than individual symbols 
– Each block consisting of n successive source symbols  

• We may view each such block as being produced by an 
extended source with a source alphabet described by the 
Cartesian product of a set n that has K n distinct blocks 
– where K is the number of distinct symbols in 

• The probability of a symbol in n is equal to the product of the 
probabilities of the n source symbols in 
– The entropy of the extended source, is equal to n times H(S)  

 ( )nH S nH S

    (1) (2) ( ) ( )
0 1 1, , , , , , ,1n n i

Ks s s s s s s i n      

s(1) s(2) s(n)…
Modulation

symbol



Prof. Tsai 15

Example: Entropy of Extended Source
• Consider a discrete memoryless source with source alphabet     

 = {s0, s1, s2}, 

– with the probabilities: p0 = 1/4, p1 = 1/4, p2 = 1/2   

• The entropy of the discrete random variable S is 

• Consider the second-order extension of the source: S 2

– with source alphabet 2

       0 2 0 1 2 1 2 2 2log 1 log 1 log 1

1 2 1 2 1 2 3 2  bits

H S p p p p p p  

   

Symbols of S 2 0 1 2 3 4 5 6 7 8

Corresponding sequences 
of symbols of S

s0s0 s0s1 s0s2 s1s0 s1s1 s1s2 s2s0 s2s1 s2s2

Probability P(i) 1/16 1/16 1/8 1/16 1/16 1/8 1/8 1/8 1/4
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Example: Entropy of Extended Source (Cont.)
• Accordingly, the entropy of the extended source is

   

       

         

8
2

2
0

2 2 2 2

2 2 2 2 2

( ) log 1 ( )

1 1 1 1
log 16 log 16 log 8 log 16

16 16 8 16
1 1 1 1 1

log 16 log 8 log 8 log 8 log 4
16 8 8 8 4
3 bits 2 3 2  bits

i i
i

H S P P 




   

    

  


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Source-Coding
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Source Coding
• Source encoding: The process used to represent the data 

generated by a discrete source of information  

• The device that performs the representation is called a source 
encoder.

• We generally assume that the statistics of the source output are 
known for source encoding

– For frequent source symbols: assigning short codewords 

– For rare source symbols: assigning long codewords

– In order to minimize the average symbol length 

– We refer to such a source code as a variable-length code

• The Morse code is an example of a variable-length code.

– Used in telegraphy
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Electrical Telegraph – Morse Code
• Morse Code 

– Names after Samuel Morse, who is 
the inventor of electrical telegraph 

• Morse Code encodes 

– The 26 English letters: A – Z

– Some non-English letters: the 
Arabic numerals and a small set of 
punctuation and procedural signals 
(e.g., wait, error, …). 

• Each Morse code symbol is formed by 
a sequence of dots and dashes. 

– The duration of a dash is three
times the duration of a dot. 

Morse code 
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Source Coding (Cont.)
• For digital communications, a source encoder must satisfy 

two requirements:

– The codewords produced by the encoder are in binary form

– The source code is uniquely decodable (one-to-one 
mapping), so that the original source sequence can be 
reconstructed perfectly from the encoded binary sequence

• The second requirement is particularly important for a perfect 
source code

– Otherwise, the transmission is inherent in errors even for a 
correct reception 
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Source Coding Efficiency
• Consider a discrete memoryless source whose output sk is 

converted by the source encoder into a binary sequence bk

– The symbol sk occurs with probability pk, k = 0, 1, , K – 1 

– The length of the binary codeword assigned to symbol sk by 
the encoder is lk (measured in bits)

• The average codeword length of the source encoder is 

– The average number of bits per source symbol used in the 
source encoding process

1

0

K

k kk
L p l






Prof. Tsai 22

Source Coding Efficiency (Cont.)
• Let Lmin denote the minimum possible value of L. 

– But how to determine Lmin?

• According to Shannon’s source-coding theorem:

– Given a discrete memoryless source whose output is denoted 
by the random variable S, the entropy H(S) imposes the 
following bound on the average codeword length       for 
any source encoding scheme: 

– H(S) represents a fundamental limit (lower bound) on 

• The coding efficiency of the source encoder is defined as

– Because               , we clearly have   1 

• The source encoder is said to be efficient when   1

 minL L H S L  

minL L

L
 L H S

L
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Data Compaction
• A common characteristic of signals generated by physical 

sources is that, in their natural form, they contain a significant 
amount of redundant information

– Direct transmission is wasteful of communication resources 

• For efficient signal transmission, the redundant information 
should be removed from the signal prior to transmission. 

– This operation, with no loss of information, is ordinarily 
performed on a signal in digital form

– Known as data compaction or lossless data compression

– The source output is efficient in terms of the average 
number of bits per symbol 

– The original data can be reconstructed with no loss of 
information
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Data Compaction (Cont.)
• Consider a discrete memoryless source of alphabet {s0, s1, , 

sK–1} and respective probabilities {p0, p1, , pK–1}.

• After source coding, the code has to be uniquely decodable 

– For each finite sequence of symbols, the corresponding 
sequence of codewords is different from the sequence of 
codewords corresponding to any other source sequence

• Basically, data compaction is achieved by assigning short (long) 
codewords to the most (less) frequent outcomes

• We discuss some source-coding schemes for data compaction:

– Prefix coding

– Huffman Coding

– Lempel–Ziv Coding 
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Prefix Coding
• In the prefix coding scheme, the codewords must satisfy a 

restriction known as the prefix condition. 

• Let the codeword assigned to source symbol sk be denoted by 

– where each element is 0 or 1 and n is the codeword length

• The initial part of the codeword is represented by the elements 

– Any sequence made up of the initial part of the codeword is 
called a prefix of the codeword. 

• A prefix code is defined as a code in which no codeword is the 
prefix of any other codeword.

   
1 2

. .

, , , 1, 0, 0, ,1
n

e g

k k km m m  

1 2
, , , for some  

ik k km m m i n

0 1 1 0 1 1 1 0 0 0  Codeword

Prefix Prefix
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Prefix Coding (Cont.)
• For prefix codes, the end of a codeword is always recognizable 

– A codeword is not the prefix of any other codeword

– The decoding can be accomplished as soon as the binary 
sequence representing a source symbol is fully received

– Prefix codes are also referred to as instantaneous codes
• In the following example, Code II is a prefix code, but Code I 

and Code III are not. Code I is not a uniquely decodable code.
Source symbol Probability of occurrence Code I Code II Code III

s0 0.5 0 0 0
s1 0.25 1 10 01
s2 0.125 00 110 011
s3 0.125 11 111 0111

codeword It is impossible to be a codeword
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Decoding of Prefix Code
• The source decoder simply starts at the beginning of the 

sequence and decodes one codeword at a time. 

• Specifically, it sets up what is                                                   
equivalent to a decision tree

– Starts at the initial state

– Once a terminal state emits its                                                
symbol, the decoder is reset to                                                  
its initial state

• The decision tree corresponding to Code II 

– The tree has an initial state and                                        
four terminal states corresponding                                                
to source symbols s0, s1, s2, and s3. 

Prof. Tsai 28

Decoding of Prefix Code (Cont.)
• Consider, for example, the following encoded sequence:

– 1 0 1 1 1 1 1 0 0 0 
– This sequence is readily                                                               

decoded as the source                                                               
sequence: s1 s3 s2 s0 s0 
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Huffman Coding
• Huffman codes: an important class of prefix codes

– A simple algorithm that computes an optimal prefix code 
for a given distribution 

– In the sense that the code has the shortest expected length

– Construct a source code whose average codeword length 
approaches the fundamental limit set by the entropy H(S) 

• The Huffman encoding algorithm proceeds as follows:

– The splitting stage:

• The source symbols are listed in order of decreasing 
probability. 

• The two source symbols of the lowest probability are 
assigned 0 and 1. 
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Huffman Coding (Cont.)
– The reduction stage:

• These two source symbols are then combined into a new 
source symbol

• The probability of the new symbol is equal to the sum
of the two original probabilities. 

• The list of source symbols, as well as source statistics, 
is reduced in size by one. 

– The procedure, the splitting and reduction stages, is 
repeated until a final list contains only two source statistics, 

• For which (0, 1) is an optimal code 

– The code for each (original) source is found by working 
backward and tracing the sequence of 0s and 1s 
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Huffman Code Construction
• Consider a discrete memoryless source with five symbols 

• Following the Huffman algorithm, it reaches the end in four 
steps, resulting in a Huffman tree as follows

• The average codeword length is 

• The entropy of the discrete memoryless source is

Symbol Probability Codeword
s0 0.4 00
s1 0.2 10
s2 0.2 11
s3 0.1 010
s4 0.1 011

s0

s1

s2

s3

s4

0.4 2 0.2 2 0.2 2 0.1 3 0.1 3 2.2 bits/symbolL           

  2.121 bitsH S L 
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Huffman Code Construction (Cont.)
• It is noteworthy that the Huffman encoding process (i.e., the 

Huffman tree) is not unique (multiple sets of codewords)

• There are two variations in the process that are responsible for 
the non-uniqueness of the Huffman code:  

– First, at each splitting stage, there is arbitrariness in the 
assignment of “0” and “1” to the last two source symbols. 

– Second, ambiguity arises when the probability of a 
combined symbol is equal to another probability in the list. 

• We may proceed by placing the probability of the new 
symbol as high as possible or as low as possible. 

• For different Huffman codes, the codewords of the same source 
symbol may have different lengths. 

– But the average codeword length remains the same
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Lempel–Ziv Coding
• A drawback of the Huffman code is that it requires knowledge of 

a probabilistic model of the source
– In practice, source statistics are not always known a priori

• In the modeling of text, capturing higher-order relationships 
between words and phrases requires an extremely large 
codebook  Extremely high storage requirement

• To overcome these practical limitations, we may use the  
Lempel–Ziv algorithm
– It is adaptive and simpler to implement than Huffman coding 
– The source data stream is parsed into segments 

• The shortest subsequences not encountered previously
• It uses the text itself as the dictionary for source coding

– No source statistics are required  

Prof. Tsai

Discrete Memoryless Channels
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Discrete Memoryless Channels
• Information generation: Discrete memoryless sources
• Information transmission: Discrete memoryless channels 
• A discrete memoryless channel is a statistical model with an 

input X and an output Y
– Y is a noisy version of X; both X and Y are random variables 

• Every unit of time, the channel accepts an input symbol X 
selected from an alphabet X and, in response, it emits an output 
symbol Y from an alphabet Y.   

• The channel is said to be “discrete” when both of the alphabets 
X and Y have finite sizes. 

• It is said to be “memoryless” when the current output symbol 
depends only on the current input symbol 
– Not any previous or future symbol

Prof. Tsai 36

Discrete Memoryless Channels (Cont.)
• A discrete memoryless channel is described in terms of            

an input alphabet
an output alphabet                                                                  
and a set of transition probabilities

– According to probability theory, we naturally have

 0 1 1, , , Ky y y  Y
 0 1 1, , , Jx x x  X

    , 0 1, 0 1k j k jp y x P Y y X x j J k K        

   1

0
0 1; 1,  for a fixed 

K

k j k jk
p y x p y x j




  
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Discrete Memoryless Channels (Cont.)
• A discrete memoryless channel can be described in the form of 

a channel matrix or transition matrix

• Suppose the event that the input X = xj occurs with probability 
(prior probability)    p(xj) = P(X = xj) for j = 0, 1, , J – 1 

• The joint probability distribution of X and Y is given by

• The marginal probability distribution of the output Y is

0 0 1 0 1 0

0 1 1 1 1 1

0 1 1 1 1 1

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

K

K

J J K J

p y x p y x p y x

p y x p y x p y x

p y x p y x p y x





   

 
 
 
 
 
  

P




   


       , ,j k j k k j jp x y P X x Y y p y x p x   

       1

0

J

k k k j jj
p y P Y y p y x p x




  
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Binary Symmetric Channel
• The binary symmetric channel is a special case of the discrete 

memoryless channel with J = K = 2. 

– Two input symbols: x0 = 0, x1 = 1

– Two output symbols: y0 = 0, y1 = 1 

• The channel is symmetric: “the probability of receiving 1 if 0 
is sent” is the same as “the probability of receiving 0 if 1 is sent” 

• The conditional probability of error is denoted by p 

– The probability of a bit flipping 

• The transition matrix is

1

1

p p

p p

 
   

P

x0 = 0

x1 = 1

y0 = 0

y1 = 1

1 – p

1 – p

p

p
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Binary Symmetric Channel (Cont.)
• To describe the probabilistic nature of this channel, we need 

– The a priori probabilities of sending symbols ‘0’ and ‘1’

– The conditional probabilities of error

• The probability of receiving symbol ‘0’ (or ‘1’) is given by

• Then, applying Bayes’ rule, we obtain the two a posteriori 
probabilities

   0 0 1 1 0 1; ; 1P x p P x p p p   

   1 0 0 1P y x P y x p 

         
         

0 0 0 0 0 1 1 0 1

1 1 0 0 1 1 1 0 1

(1 )

(1 )

P y P y x P x P y x P x p p pp

P y P y x P x P y x P x pp p p

    

    

           
           

0 0 0 0 0 0 0 0 1

1 1 1 1 1 1 1 0 1

(1 ) (1 )

(1 ) (1 )

P x y P y x P x P y p p p p pp

P x y P y x P x P y p p pp p p

    

    
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Mutual Information
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Conditional Entropy
• In a discrete memoryless channel, we know that 

– The channel output Y (selected from alphabet Y) is a noisy 
version of the channel input X (selected from alphabet X). 

– The entropy H(X) is a measure of the prior uncertainty 
about the discrete source output X. 

• How can we measure the uncertainty about X after observing Y?

– The conditional entropy of X given that Y = yk is observed

– Depending on the value of Y = yk

– Because Y is a random variable, it takes on the values 
H(X|Y = y0), H(X|Y = y1), , H(X|Y = yK–1) 

• with probabilities p(y0), p(y1), , p(yK–1), respectively. 

        1

20
log 1

J

k X j k j k j kj
H X Y y E I x Y y p x y p x y




      
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Conditional Entropy (Cont.)
• The conditional entropy H(X|Y) is the expectation of entropy 

H(X|Y = yk) over the output alphabet Y 

• The conditional entropy, H(X|Y), is the average amount of 
uncertainty remaining about the channel input X after the 
channel output Y has been observed.  

– Some uncertainty has been removed through transmission  

       

      

    

1

0

1 1

2
0 0

1 1

2
0 0

log 1

, log 1

K

Y k k k
k

K J

j k k j k
k j

K J

j k j k
k j

H X Y E H X Y y H X Y y p y

p x y p y p x y

p x y p x y





 

 

 

 

     











Uncertainty
H(X)

Given Y

H(X|Y)
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Mutual Information
• The conditional entropy H(X|Y) relates the channel output Y to 

the channel input X. 

• The entropy H(X) accounts for the uncertainty about the 
channel input before observing the channel output.

• The conditional entropy H(X|Y) accounts for the uncertainty 
about the channel input after observing the channel output.

• The definition the mutual information of the channel: 

– It is a measure of the uncertainty about the channel input, 
which is resolved by observing the channel output.

     ;I HY XX X H Y 

Prof. Tsai 44

Mutual Information (Cont.)
• The mutual information of a channel can also be defined as

– It is a measure of the uncertainty about the channel output 
that is resolved by sending the channel input.

• Although the two definitions look different, but they could be 
used interchangeably. 

     ;I HX YY Y H X 



Prof. Tsai

H(X|Y) H(Y|X)I(X;Y)

H(X,Y)

45

Properties of Mutual Information
• PROPERTY 1: The mutual information of a channel is 

symmetric in the sense that

• PROPERTY 2: The mutual information is always nonnegative

– We cannot lose information, on the average, by observing 
the output of a channel.

• PROPERTY 3: The mutual                                                        
information of a channel is                                                             
related to the joint entropy of the                                                       
channel input and channel output 

   ; ;I X Y I Y X

 ; 0I X Y 

       ; ,I X Y H X H Y H X Y  
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Meaning of Mutual Information 
• The definition the mutual information of the channel: 

• If the channel output is always the same, H(X|Y) = H(X) 

– The mutual information is equal to I(X; Y) = 0

– No information is resolved by observing the channel output

• If the channel output is always equal to the input (i.e., a 
perfect noiseless channel), H(X|Y) = 0 

– The mutual information is equal to I(X; Y) = H(X)    

– Complete information of the channel input can be resolved 
by observing the channel output

     ;I X Y H X H X Y 
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Channel Capacity
• Consider a discrete memoryless channel with input alphabet X, 

output alphabet Y, and transition probabilities p(yk|xj) 

• The mutual information of the channel is defined by
         
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Channel Capacity (Cont.)
• Hence, the mutual information of the channel is defined by

• Then, according to 

• Finally, we have

• The mutual information I(X;Y) depends on 

– The probability distribution of the channel input and

– The transition probability distribution of the channel

        
1 1

2
0 0

; , log
K J

j k k j k
k j
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     ;I X Y H X H X Y 

          2 2 2log log logk j k k j kp y x p y p y x p y 
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Channel Capacity (Cont.)
• The two probability distributions p(xj) and p(yk|xj) are obviously 

independent of each other. 

• Given the channel’s transition probability distribution {p(yk|xj}, 
the channel capacity is defined in terms of the mutual 
information between the channel input and output:

• The channel capacity of a discrete memoryless channel is 
defined as the maximum mutual information I(X;Y) in any 
single use of the channel (i.e., signaling interval) 

– where the maximization is over all possible input 
probability distributions {p(xj)} on X.

  
 
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Channel Capacity of Binary Symmetric Channel
• Consider the binary symmetric channel defined by the 

conditional probability of error p.

• The entropy H(X) is maximized when the channel input 
probability p(x0) = p(x1) = 1/2    

– The mutual information I(X;Y) is similarly maximized 

• Thus, the channel capacity is

• Using the definition of the entropy                                              
function, the channel capacity is

     

   
0 1 1 2

2 2

;

1 log 1 log 1

p x p xC I X Y
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 

    

 1C H p 

– H(p)
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Channel Capacity of BSC (Cont.)
• The channel capacity C varies with the probability of error (i.e., 

transition probability) p in a convex manner 

– It is symmetric about p = 1/2    

• When the channel is noise free, permitting us to set p = 0

– The channel capacity C attains its maximum value of one 
bit per channel use 

– Which is exactly the information in each channel input   

• When the conditional probability of error p = 1/2 

– The channel capacity C attains its minimum value of zero

– The channel is said to be useless in the sense that the 
channel input and output become statistically independent 

• How about the condition with p = 1 ?  1 1C H p  
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Channel-Coding Theorem
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Error-Free Transmission
• Consider a binary symmetric channel defined by the 

conditional probability of error p > 0.

– The channel capacity is C < 1  

• The error probability for the transmission of an information 
bit through the BSC channel is p > 0.  

– The channel capacity C is less than the entropy of a bit. 

– If an error occurs, information of the bit is lost. 

• How to prevent information loss through the BSC channel? 

– Achieve error-free transmission through a BSC with p > 0. 

– All information is preserved at the destination. 

Source
one bit Channel

BSC (p > 0) Destination
one bit 
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Channel Coding
• The inevitable presence of noise in a channel causes detection 

errors at the receiver of a digital communication system. 

• In a relatively noisy channel with a low SNR (e.g., wireless 
communication channels), the probability of error may higher 
than 10–1 . 

– This level of reliability is generally unacceptable

• For many applications, a probability of error lower than or 
equal to 10–6 is often a necessary practical requirement.

– We resort to the use of channel coding.
An equivalent channel
with good performance
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Channel Coding (Cont.)
• The design goal of channel coding is to increase the resistance 

of a digital communication system to channel noise. 

• Specifically, channel coding consists of 

– At the transmitter: Mapping the incoming data sequence 
into a channel input sequence  channel encoder

– At the receiver: inverse mapping the channel output 
sequence into an output data sequence  channel decoder

– Goal: the overall effect of channel noise on the system is 
minimized

• The approach taken is to introduce redundancy in the channel 
encoder in a controlled manner, so as to reconstruct the 
original source sequence in the channel decoder as accurately 
as possible. 
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Channel Coding (Cont.)
• Consider one class of channel-coding: block codes

– The message sequence is subdivided into sequential blocks 

• Each block contains k bits   

– Each k-bit block is mapped into an n-bit block, where n > k

– The number of redundant bits added by the encoder to each 
transmitted block is n – k bits  

• The ratio k/n is called the code rate

– where r is less than unity (r  1) 

– For a prescribed k, the code rate r (and, therefore, the 
system’s coding efficiency) approaches zero as the block 
length n approaches infinity.

r k n

Time duration of a block: T
Information rate: Rb = k/T
Coded symbol rate: n/T = Rb/r
For a fixed Rb:
Code rate r 
 Transmission rate , B 
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Channel Coding (Cont.)
• To accurately reconstruct the original source sequence, the 

average probability of symbol error of the decoded data 
sequence must be arbitrarily low.

• Does a channel-coding scheme exist? such that, 

– The probability that a message bit will be in error is less 
than any positive number , and  

– The channel-coding scheme is efficient in that the code rate 
need not be too small

• The answer to this fundamental question is “yes.” 

– The answer to the question is provided by Shannon’s 
second theorem in terms of the channel capacity C
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Channel-Coding Theorem
• Consider a discrete memoryless source that has the source 

alphabet  and entropy H(S) bits per source symbol. 

• Assume that the source emits symbols once every Ts seconds

– The average information rate: H(S)/Ts bits per second

– The decoder delivers decoded symbols to the destination at 
the same source rate (i.e., one symbol every Ts seconds) 

• For example: H(S) =  4 bits and Ts = 0.1 sec

– The average information rate: H(S)/Ts = 40 bps

Source
H(S)/Ts bps Equivalent

Channel Destination
H(S)/Ts bps 
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Equivalent Channel
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Channel-Coding Theorem (Cont.)
• The discrete memoryless channel has a channel capacity equal 

to C bits per use of the channel. 

• Assume that the channel can be used once every Tc seconds 

– The channel capacity per unit time: C/Tc bits per second 

– The maximum rate of information transfer over the channel 
to the destination: C/Tc bits per second 

• For example: C =  0.8 bits and Tc = 0.01 sec

– The maximum rate of information transfer: C/Tc = 80 bps

C/Tc bps Channel
Encoder

Channel
DecoderChannel

C/Tc bps 

C: Power (error rate)
Tc: Bandwidth
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Channel-Coding Theorem (Cont.)
• Shannon’s second theorem: the channel-coding theorem
• Let a discrete memoryless source with an alphabet  have 

entropy H(S) for random variable S and produce symbols once 
every Ts seconds. 

• Let a discrete memoryless channel have capacity C and be 
used once every Tc seconds. 

• Then, if                                                                                     
there exists a coding scheme for which the source output can 
be transmitted over the channel and be reconstructed with an 
arbitrarily small probability of error. 

• The parameter C/Tc is called the critical rate. 

– When                            , the system is said to be signaling at 
the critical rate.

  s cH S T C T

  s cH S T C T
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Channel-Coding Theorem (Cont.)
• Conversely, if                                                                               

it is not possible to transmit information over the channel and 
reconstruct it with an arbitrarily small probability of error.

• The channel-coding theorem is the single most important
result of information theory. 

– The theorem specifies the channel capacity C as a 
fundamental limit on the rate at which the transmission of 
reliable error-free messages can take place over a discrete 
memoryless channel. 

  s cH S T C T

Channel capacity
Information entropyError is

inevitable

Error-free
transmission

is possible
Information entropy
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Channel-Coding Theorem (Cont.)
• However, it is important to note two limitations of the theorem:

• The channel-coding theorem does not show us how to 
construct a good code. 

– The theorem should be viewed as an existence proof in the 
sense that 

– If                              is satisfied, then good codes do exist. 

• The theorem does not have a precise result for the probability 
of symbol error after decoding the channel output. 

– The theorem only tells us that the probability of symbol 
error tends to zero as the length of the code increases

• Providing that the condition                              is satisfied

  s cH S T C T

  s cH S T C T
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Channel-Coding Theorem for BSC
• Consider a discrete memoryless source that emits equally 

likely binary symbols (0s and 1s) once every Ts seconds. 

– The source entropy: one bit per source symbol  H(S) = 1

– The information rate: 1/Ts bits per second 

• The source sequence is applied to a channel encoder 

– The code rate: r

– The encoded symbol rate: 1/Tc symbols per second 

• If the channel encoder engages a binary symmetric channel 
once every Tc seconds. 

– The channel capacity per unit time: C/Tc bits per second

– C is determined by the channel transition probability p

   2 21 log 1 log 1C p p p p    
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Channel-Coding Theorem for BSC (Cont.)
• According to the channel-coding theorem, if

– The probability of error can be made arbitrarily low by the 
use of a suitable channel encoding scheme

• The ratio Tc/Ts equals the code rate of the channel encoder

• Hence, we may restate the condition

• That is, for r  C, there exists a code (with code rate r less 
than or equal to channel capacity C) capable of achieving an 
arbitrarily low probability of error.

s c1 T C T

c sr T T

s c1 T C T r C  

k bits  kTs sec 
 kTs/Tc bits = n bits
 r = k/n = Tc/Ts
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Example: Repetition Code
• Consider a BSC with transition probability p = 10–2

– The channel capacity: C = 0.9192

• Hence, for any  > 0 and r  C = 0.9192, there exists a code of 
large enough length n, code rate r, and an appropriate decoding 
algorithm, such that, 

– When the coded bit stream is sent over the given channel, 
the average probability of decoding error is less than .

• In the following, we consider a simple coding scheme that 
involves the use of a repetition code.

– Each bit of the message is repeated several times. 

– Let each bit (0 or 1) be repeated n (an odd integer) times.

– For example, for n = 3, we transmit 0 and 1 as 000 and 111
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Example: Repetition Code (Cont.)
• Intuitively, the channel decoder uses a                                 

majority rule for decoding:

– In a block of n repeated bits, if the                                                
number of 0s exceeds the number of                                       
1s, the decoder decides in favor of a 0

– Otherwise, it decides in favor of a 1 

• An error occurs when m + 1 or more bits                                
out of n = 2m + 1 bits are received                                 
incorrectly. 

• The average probability of error is 

   e
1

1
n

n ii

i m

nP p pi


 

 

p = 10–2

A large
gape


Not a 

good code

Exchange of code rate
for message reliability
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Differential Entropy
• In addition to the discrete sources, we extend these concepts to 

continuous random variables. 

– For the description of another fundamental limit in 
information theory

• Consider a continuous random variable X with the probability 
density function fX(x). 

• We define the differential entropy of X as 

– To distinguish from the ordinary or absolute entropy

– Although h(X) is a useful mathematical quantity to know, it 
is not, in any sense, a measure of the randomness of X. 

     2log 1X Xh X f x f x dx



   
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Differential Entropy (Cont.)
• In a limiting form, the continuous random variable X is viewed 

as a discrete random variable  

– xk = kx, where k = 0, 1,  2, , and x approaches zero 

• By definition, X is in the interval [xk, xk + x] with probability
fX(xk) x

• The ordinary entropy of the continuous random variable X
takes the limiting form: 

     
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Differential Entropy (Cont.)

• In the limit as x approaching zero, the term “– log2 x”
approaches infinity. 

– The entropy H(X) of a continuous random variable X is 
infinity

• The evaluation of entropy for a continuous random variable is 
infeasible

• We only adopt the differential entropy h(X) as a measure

– The term “– log2 x” is regarded as a reference

       
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log lim log
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Differential Entropy (Cont.)
• When we have a continuous random vector X consisting of n 

random variables X1, X2, , Xn, we define the differential 
entropy of X as the n-fold integral   

– where fX(x) is the joint probability density function of X

     2

1
logh f d

f





 
   

 
 X

X

X x x
x



Prof. Tsai 73

Channel Capacity Based on Differential Entropy
• Channel capacity is the information transmitted over a channel

– The mutual information between channel input and output

– Evaluation of channel capacity based on entropy for a 
continuous channel is impossible 

• For the difference between two entropy terms that have a 
common reference, the information will be the same as the 
difference between the corresponding differential entropy 
terms

– “– log2 x” is the common reference for input and output

• Channel capacity is evaluated based on differential entropy 

   

   
2 2

0 0
( ) lim log ( ) lim log
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x y
H X H Y h X x h Y y
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            
    
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Example: Uniform Distribution
• Consider a random variable X uniformly distributed over the 

interval (0, a). 

• The probability density function of X is 

• The differential entropy of X is 

• Note that log2 a < 0 for a < 1. 

• Unlike a discrete random variable, the differential entropy of a 
continuous random variable can be a negative value. 

– The value of a pdf could be larger than 1

  1 , 0

0, otherwiseX

a x a
f x

 
 


       2 20
1 log log

a
h X a a dx a  
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Distribution with the Max. Differential Entropy
• The entropy of the discrete random variable S is bounded

– where K is the number of symbols in the alphabet 

• H(S) = log2K: if, and only if, pk = 1/K for all k (i.e., all the 
symbols in the source alphabet  are equiprobable)

– This upper bound corresponds to maximum uncertainty

• The discrete channel capacity is defined as 

• What kind of distribution has the maximum differential 
entropy (under a fixed variance) ? 
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Relative Entropy of Continuous Distributions
• Consider a pair of continuous random variables X and Y whose 

respective probability density functions are denoted by fX (x) 
and fY (x) for the same dummy variable (argument) x.

• The relative entropy (a measurement of the similarity) of the 
random variables X and Y is defined by

– where fX (x) is viewed as the “reference” distribution

– If  fX (x) =  fY (x), the relative entropy is D(fY | fX) = 0

• Based on some fundamental properties, we have D(fY | fX)  0

• Hence, we have the differential entropy of Y

       2logY Y YX Xf f xf f x xD dxf
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Example: Gaussian Distribution
• Suppose two random variables, X and Y

– X and Y have the common mean  and variance  2

– X is Gaussian distributed (Y may be non-Gaussian)

• Based on the relative entropy of  X and Y  

• By changing the base of the logarithm from 2 to e = 2.7183

– where e is the base of the natural logarithm (Euler’s number)

 
2

2

1 ( )
exp

22
X

x
f x




 
  

 

     

   
2

2

2 2 2

log 1

( )
log 2 log exp

2

Y

Y

Xh Y f x

f

f x

x

dx

x
dx












   

   
      

    





Prof. Tsai 78

Example: Gaussian Distribution

• Given the mean  and variance  2 of Y, we have 

• Therefore (as shown in the next page),

• If X is a Gaussian random variable and Y is a non-Gaussian
random variable, then h(Y) < h(X) 
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Example: Gaussian Distribution (Cont.)
• If we use  fX (x) to substitute  fY (x), we have 
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Example: Gaussian Distribution (Cont.)
• Two entropic properties of a random variable: 

– For any finite variance, a Gaussian random variable has the 
largest differential entropy attainable by any other random 
variable.

– The entropy of a Gaussian random variable is uniquely 
determined by its variance (i.e., independent of the mean).

• The Gaussian channel model is widely used as a conservative 
model in the study of digital communication systems. 

     2
2

1
log 2

2
h Y e h X  



Prof. Tsai 81

Mutual Information of Continuous Distributions
• The mutual information between a pair of continuous random 

variables X and Y is defined as follows: 

– where fX|Y (x|y) is the conditional pdf of X given Y = y

• The mutual information between the pair of Gaussian random 
variables has the following properties:

– where the conditional differential entropy of X given Y is 

       , 2; , logX Y XX YI X Y f x y f x y f x dx dy
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Information Capacity Theorem
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Band-limited, Power-limited Gaussian Channel
• In the following, we formulate the information capacity for a 

band-limited, power-limited Gaussian channel

• To be specific, consider a zero-mean stationary process X(t) that 
is band-limited to B Hz 

– Xk, k = 1, 2, , K: the continuous random variables obtained 
by uniformly sampling at a rate of 2B samples per second

– 2B samples per second: the Nyquist rate

• Suppose that the K samples are transmitted in T seconds over a 
noisy channel, also band-limited to B Hz  K = 2BT

• The channel output is perturbed by additive                                      
white Gaussian noise (AWGN) of zero mean                                    
and power spectral density N0 /2 
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Band-limited, Power-limited Gaussian Channel
• The corresponding samples of the channel output Yk are

– Nk is Gaussian distributed with zero mean and variance N0B 

– Yk, k = 1, 2, , K, are statistically independent

– A discrete-time, memoryless Gaussian channel

• Typically, the transmitter is power limited

– Define the cost as E[(Xk)2] = P, k = 1, 2, , K
• where P is the average transmitted power

• The power-limited Gaussian channel                                               
models many communication channels  

– Including line-of-sight (LOS) radio and                                   
satellite links

, 1, 2, ,k k kY X N k K   
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Information Capacity
• The information capacity of the channel is defined as the 

maximum of the mutual information between the channel 
input Xk and the channel output Yk

– Over the distributions of Xk that satisfy the power 
constraint

– I(Xk;Yk): the mutual information between Xk and Yk

• Since Xk and Nk are independent random variables 

– Given Xk, the distribution of Yk depends only on Nk

 
(

2

)
max ; , Subject  to

Xk
f x

k k kC I X Y E X P   

     ;k k k k kI X Y h Y h Y X 

   
     ;

k k k

k k k k

h Y X h N

I X Y h Y h N



  
k k kY X N 
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Information Capacity (Cont.)

• With h(Nk) being independent of the distribution of Xk

– Maximizing I (Xk; Yk) is equivalent to maximizing the 
differential entropy h(Yk) 

• To maximize h(Yk), Yk has to be a Gaussian random variable 

– The channel output Yk must be a noise-like process 

– Since Nk is Gaussian by assumption, the sample Xk of the 
channel input must be Gaussian too

• We may state that maximizing the information capacity is 

– To choose samples of the channel input from a noise-like
Gaussian-distributed process of average power (variance) P

  2; :  Gaussian, Subject  tok k k kC I X Y X E X P   

     ;k k k kI X Y h Y h N 

k k kY X N 
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Information Capacity (Cont.)
• For the evaluation of the information capacity C

– The variance of output sample Yk equals P +  2

• Because Xk and Nk are statistically independent

• P: variance of Xk;  2 = N0B: variance of Nk

• The differential entropy is 

– The variance of the noisy sample Nk equals  2; hence, 

– Accordingly, the information capacity of the channel, in 
bits per channel use, is

   2
2

1
log 2

2kh Y e P    

   2
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2kh N e 

   2 2 2
2 2 2

1 1 1
log 2 log 2 log 1

2 2 2
C e P e P             
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Information Capacity (Cont.)
• With the channel used K times for the transmission of K 

samples of the process X(t) in T seconds, we find that 

– The information capacity per unit time is (K/T) times C
– The number K equals 2BT   

– The information capacity of the channel per unit time is 

• where N0B is the total noise power at the channel output

• The information capacity, per unit time, of a continuous 
channel of bandwidth B Hz, perturbed by AWGN of power 
spectral density N0/2 and limited in bandwidth to B, is given by 

 2 0log 1C KC T B P N B     

2
0

log 1
P

C B
N B

 
  

 
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Information Capacity (Cont.)
• The information capacity law is one of the most remarkable 

results of Shannon’s information theory. 

• The information capacity C depends on three key system 
parameters: channel bandwidth, average transmitted power, 
and power spectral density of channel noise. 

– The dependence of C on channel bandwidth B is linear

– The dependence of C on signal-to-noise ratio P/(N0B) is 
logarithmic

2
0

log 1
P

C B
N B

 
  

 
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Information Capacity (Cont.)
• To increase the information capacity of a continuous 

communication channel

– By expanding the bandwidth: much easier

– By increasing the transmitted power: harder

– Bandwidth and power are the two major resources

• It is not possible for error-free transmission at a rate higher 
than C bits per second by any encoding system.

• Hence, the channel capacity law defines the fundamental limit 
on the permissible rate of error-free transmission for a power-
limited, band-limited Gaussian channel. 

– To approach this limit, the transmitted signal must have 
statistical properties approximating those of white Gaussian 
noise.



Prof. Tsai

Implications of the Information 
Capacity Law
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Information／Coding／Modulation
• For comparison, we define 

– Information bits: bit rate Rb, bit energy Eb, bit interval Tb

– Coded bits: bit rate Rc, bit energy Ec, bit interval Tc

– Modulation symbol: symbol rate Rs, energy Es, interval Ts

• Assume that Rb = 30 kbps, Eb = 12, Tb = 60

• If the code rate is r = 1/2, and the bandwidth is B = 20 kHz

– Rc = 60 kbps, energy Ec = 6, interval Tc = 30    

– 8-PSK: Rs = 20 ksps, energy Es = 18, interval Ts = 90    

• If the code rate is r = 1/4, and the bandwidth is B = 20 kHz

– Rc = 120 kbps, energy Ec = 3, interval Tc = 15    

– 64-QAM: Rs = 20 ksps, energy Es = 18, interval Ts = 90    D
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Information／Coding／Modulation (Cont.)
• Assume that Rb = 30 kbps, Eb = 12, Tb = 60

• If the code rate is r = 1/4, and the bandwidth is B = 40 kHz

– Rc = 120 kbps, energy Ec = 3, interval Tc = 15    

– 8-PSK: Rs = 40 ksps, energy Es = 9, interval Ts = 45    

• If the code rate is r = 0.1, and the bandwidth is B = 100 kHz

– Rc = 300 kbps, energy Ec = 1.2, interval Tc = 6    

– 8-PSK: Rs = 100 ksps, energy Es = 3.6, interval Ts = 18    

• It is possible to use various types of code rate/modulation 
under the same information rate Rb and the same bandwidth B.

– However, the required channel capacity is the same C  Rb.

• For theoretical comparison, we only consider the information 
rate Rb , the capacity C, the bandwidth B, and the SNR Eb/N0. 
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Information Capacity Law
• Consider an ideal system that transmits data at a bit rate Rb

equal to the information capacity C. (information bit rate)

• The average transmitted power is P = Eb/Tb = EbRb = EbC

– where Eb is the transmitted energy per bit

• Accordingly, the ideal system is defined by the equation

• The signal energy-per-bit to noise power spectral density 
ratio, Eb/N0, in terms of the ratio C/B for the ideal system is 

• Bandwidth-efficiency diagram: A plot of the bandwidth 
efficiency Rb/B versus Eb/N0
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Bandwidth-Efficiency Diagram
• 1. For infinite channel

bandwidth, the minimum 
SNR approaches the limit

– Shannon limit for an 
AWGN channel
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Bandwidth-Efficiency Diagram (Cont.)

• Minimum required SNR 
for efficient transmission

• The corresponding limiting  
value of channel capacity
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Bandwidth-Efficiency Diagram (Cont.)
• 2. The capacity 

boundary is defined by 
the curve for the critical 
bit rate Rb = C. 

– For any point on this 
boundary, we have 
error-free 
transmission or not 
with probability of 
1/2.
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Bandwidth-Efficiency Diagram (Cont.)
• 3. The diagram highlights 

potential trade-offs among 
three quantities: 

– Eb/N0, Rb/B, and the 
symbol error rate Pe

– For the operating point 
along a horizontal line: 
trading Pe versus Eb/N0

for a fixed Rb/B

– For the operating point 
along a vertical line: 
trading Pe versus Rb/B 
for a fixed Eb/N0
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Example: M-ary PCM
• Considering the sampling of an analog signal, each sample is 

quantized by L levels for transmission (source coding)    

• The information bits are encoded by an M-ary PCM (pulse-code 
modulation) system (signaling)

– n: the number of code elements in each codeword 

– There are M n different codewords (for a sample)

Transmitter (Analog  Digital)
t

m(t)

L
levels

1 sample  S1, S1, , Sn

t

S1

S2 S3 Sn

M-ary PCM

L = M n
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Example: M-ary PCM (Cont.)
• The average transmission power of M-ary PCM is

– k is a constant for successfully decoding 

• For example, k = 4 can prevent any symbol error

–  2 = N0B: the noise variance measured in a bandwidth B

• Suppose that the bandwidth of the message signal is W and          
the number of quantization levels is L

– Sample rate: 2W; PCM symbol rate: 2nW (n symbols/sample)

• The maximum rate of information transmission over the PCM 
system is

 
2 2 2 2
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Example: M-ary PCM (Cont.)
• For a unique encoding process, we have  L = M n

• The rate of information transmission is

• Solving the number of discrete amplitude levels under the 
average transmission power P (power constraint), we have 

• Therefore,

• The required channel bandwidth is B = nW

– A baseband rectangular pulse of duration 1/(2nW)   

–  is a constant between 1 and 2  the minimum value is 1

b 22 log bits per secondR nW M

1 22
2 2

2
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1 12
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12

M P
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k N B
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n symbols/sample
 symbol rate 2nW

no. levels = 
no. codewords

Allowable M for error-free
transmission with k

PCM symbol
rate: 2nW
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Example: M-ary PCM (Cont.)
• Therefore, the minimum

required channel bandwidth 
is B = nW (for baseband Tx.)

• Hence, 

• If the average transmission 
power in the PCM system    
is increased by k2/12, 

– The maximum rate of 
information transmission 
is identical to the capacity 
of the ideal system 
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Example: M-ary PSK
• Consider a coherent M-ary

PSK system

– Using the null-to-null
bandwidth, the bandwidth 
efficiency is

• The operating points 
correspond to an average 
probability of symbol error  
Pe = 10 –5

– M = 2, 4, 8, 16, 32, 64

b 2log

2

R M

B


As M is increased
BPSK

QPSK

SNR
gape

Capacity
gape
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Example: M-ary FSK
• Consider a coherent M-ary

FSK system

– With the separation 
between adjacent 
frequencies 1/2T, the 
bandwidth efficiency is

• The operating points 
correspond to an average 
probability of symbol error  
Pe = 10 –5

– M = 2, 4, 8, 16, 32, 64

b 22 logR M

B M


As M is increased
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Capacity of Binary-Input AWGN Channel
• Consider the capacity of an AWGN channel using encoded

(channel coding) binary antipodal signaling (i.e., ‘0’: –1; ‘1’: +1)

– To determine the minimum achievable bit error rate as a 
function of Eb/N0 for varying code rate r

• Let the random variables X and Y denote the channel input and 
channel output respectively (soft information is available)

– X is a discrete variable, whereas Y is a continuous variable 

– Y is continuous: Soft information is available

• The mutual information between X and Y

– For Gaussian distributed noise with a variance  2

     ;I X Y h Y h Y X 

     2
2

1
log 2

2
h Y X h N e   Y X N 
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Capacity of Binary-Input AWGN Channel(Cont.)
• The probability density function of Y is a mixture of two 

Gaussian distributions (given X = x) with common variance

• Then, the differential entropy of Y is 

– No closed form is available

• The mutual information is solely a function of the noise 
variance  2  I(X;Y) = M( 2)  for a function M

• For error-free transmission over the AWGN channel, the code 
rate r must be smaller than the channel capacity C (i.e., I(X;Y))
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Capacity of Binary-Input AWGN Channel(Cont.)
• A robust measure of the ratio Eb/N0 is

– where P is the average transmitted power, Tb is the bit 
duration, Ts = Tb r is the coded symbol duration, and N0/2 is 
the two-sided power spectral density of the channel noise 

• For the maximum code rate r, 

– where M –1(r) is the inverse of the mutual information 
between the channel input and channel output 

• By setting P = 1, the desired relation between Eb/N0 and r is 
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Capacity of Binary-Input AWGN Channel(Cont.)
• Using the Monte Carlo method to estimate the differential 

entropy h(Y) and therefore M –1(r)  Eb/N0 versus r

Minimum Eb/N0 versus r Minimum BER versus Eb/N0

–1.6 dB


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Capacity of Binary-Input AWGN Channel(Cont.)
• From previous results, we have the following conclusions:

– For uncoded binary signaling (i.e., r = 1), an infinite Eb/N0

is required for error-free communications   

– The minimum Eb/N0, decreases with decreasing code rate r

• For example, for r = 1/2, the minimum value of Eb/N0 is 
slightly less than 0.2 dB 

– As r approaches zero (equivalent to bandwidth B ), the 
minimum Eb/N0 approaches the limiting value of –1.6 dB
(Shannon limit)

Prof. Tsai

Information Capacity of Colored 
Noisy Channel
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Colored Noisy Channel
• Previous discussion is under the assumption of a band-limited 

white noise channel. 

• Consider the more general case of a non-white (non-constant 
PSD), or colored, noisy channel. 

– H(f ): transfer function (frequency response) of the channel

– n(t): channel noise

• A stationary Gaussian process of zero mean and power 
spectral density SN(f )  

SN(f )
Frequency-dependent
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Colored Noisy Channel (Cont.)
• The goals of this study:  

– Find the input ensemble, described by the PSD SX(f ) that

• Maximizes the mutual information between the 
channel output y(t) and the channel input x(t)

• Subject to the average power constraint P of x(t)

– Determine the optimum information capacity of the 
channel
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Colored Noisy Channel (Cont.)
• Because the channel is linear, the channel model can be 

replaced with an equivalent model 

– From the viewpoint of the spectral characteristics of the 
signal plus noise measured at the channel output

– The power spectral density of the noise n'(t) is defined as

   
  2

N
N

S f
S f

H f
 

SNR remains
the same SN(f )



Power allocation 
is considered here  
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Colored Noisy Channel (Cont.)
• To simplify the analysis, the continuous |H(f )| is approximated 

in the form of a staircase

– The channel is divided into a large number of adjoining 
frequency slots  Slot width: f (one-sided)

• The original model is replaced by the parallel combination of 
a finite number of                                                                           
subchannels, N

– Each is corrupted                                                                            
by “band-limited                                                                  
white Gaussian                                                                        
noise”
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Capacity of Colored Noisy Channel
• The k-th subchannel in the approximation is described by

• The average power of the signal component xk(t) is

– where SX(fk) is the PSD of the input signal evaluated at f = fk

• The variance of the noise component nk(t) is

– where SN(fk) and |H(fk)| are the noise spectral density and the 
channel’s magnitude response evaluated at f = fk

• The information capacity of the k-th subchannel is

      , 1, 2, ,k k ky t x t n t k N   
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Positive &
Negative freq.

Channel gain is normalized
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Capacity of Colored Noisy Channel (Cont.)
• All the N subchannels are independent of one another. 

• The total capacity of the overall channel is approximately 
given by the summation

• We want to maximize the overall information capacity C 
subject to the total power constraint 

• The method of Lagrange multipliers is used to solve a 
constrained optimization problem (The solving is omitted) 

• To satisfy this optimizing solution, we have the requirement:

– where K is a constant chosen to satisfy the power constraint
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Capacity of Colored Noisy Channel (Cont.)
• Inserting the defining values of Pk and k, we get

• Let ℱA denote the frequency range for which the constant K 
satisfies the condition (since SX(fk)  0)

• As the incremental frequency interval approaches zero and the 
number of subchannels N goes to infinity

– The PSD of the input ensemble that achieves the optimum 
information capacity is a nonnegative quantity defined by
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Capacity of Colored Noisy Channel (Cont.)
• The average power of the channel input x(t) is

– The constant K is set to the value satisfying the constraint

• For the optimum information capacity, we have

– where A denotes the set of subchannel index with Pk > 0

• When the incremental frequency interval approaches zero, we 
have the limiting form
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Water-filling Interpretation of the 
Information Capacity Law
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Water-filling Interpretation
• According to the PSD of the input ensemble that achieves the 

optimum information capacity and the average power of the 
channel input x(t) 

• We have the following observations:

– The appropriate input power spectral density SX ( f ) is the 
bottom regions of the function SN ( f )/|H( f )|2 that lie below 
the constant level K (which are shown shaded).

– The input power P is defined by the total area of these 
shaded regions.
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Signal power

Low noise level
Allocate more

signal power
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Water-filling Interpretation (Cont.)
• The shown spectral-domain picture is called the water-filling 

(pouring) interpretation, in the sense that 

– The process of distributing the input power across the 
function SN ( f )/|H( f )|2 is identical to “The way in which 
water distributes itself in a vessel” 
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Water-filling Interpretation (Cont.)
• Consider the idealized case of a band-limited signal in AWGN 

channel of power spectral density SN ( f ) = N0/2   

– The transfer function H( f ): an ideal band-pass filter

– fc: the midband frequency; B: the channel bandwidth

• The average input signal power and the optimum 
information capacity become
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Homework
• You must give detailed derivations or explanations, 

otherwise you get no points. 

• Communication Systems, Simon Haykin (4th Ed.)

• 9.2;        9.3;

• 9.5;        9.10;

• 9.12;      9.17;

• 9.22;      9.23;

• 9.29;      9.30;


