通訊系統(II)

國立清華大學電機系暨通訊工程研究所 蔡育仁 台達館821室

Tel: 62210

E-mail: yrtsai@ee.nthu.edu.tw

Prof. Tsai

Chapter 7 Information Theory

Introduction

Prof. Tsai

Introduction

- In communications, **information theory** deals with modeling and analysis of a **communication system**
- In particular, it provides answers to two fundamental questions:
 - Signal Source: What is the irreducible complexity, below which a signal cannot be compressed?
 - Channel: What is the ultimate transmission rate for reliable communication over a noisy channel?
- The answers to these two questions lie in the **entropy of a source** and the **capacity of a channel**, respectively:
 - Entropy: the probabilistic behavior of a source of information
 - Capacity: the intrinsic ability of a channel to convey information (related to the noise characteristics)

Introduction

- If the entropy of the source is **less than** the capacity of the channel, then, ideally, **error-free communication** over the channel can be achieved.
- If the entropy of the source is **more than** the capacity of the channel, then, error-free communication over the channel is **impossible**.

Prof. Tsai

Uncertainty, Information and Entropy

Entropy

- Suppose that a **probabilistic experiment** involves observation of the output emitted by a **discrete source** during every signaling interval.
- A sample of the source output is denoted by the discrete random variable S
 - with the fixed finite **alphabet** $\mathbb{S} = \{s_0, s_1, \dots, s_{K-1}\}$
 - with probabilities $P(S = s_k) = p_k$, $k = 0, 1, \dots, K-1$
- We assume that the symbols emitted by the source during successive signaling intervals are **statistically independent**.
- How much **information** is produced by such a source?
 - The amount of information is closely related to that of uncertainty

Prof. Tsai

Entropy (Cont.)

- Consider the event $S = s_k$, describing the emission of symbol s_k by the source with probability p_k
 - If the probability $p_k = 1$ and $p_i = 0$ for all $i \neq k$, then
 - There is **no information** when symbol s_k is emitted
 - If $0 < p_k < p_i < 1$, then there is **more information** when symbol s_k is emitted than when symbol s_i is emitted
 - The occurrence of a rare event implies more information
 - **Before** the event $S = s_k$ occurs, there is an amount of **uncertainty**. \Rightarrow **After** the occurrence of the event $S = s_k$, there is gain in the amount of **information**.
- Most importantly, the amount of information is related to the inverse of the probability of occurrence of the event $S = s_k$.

Entropy (Cont.)

• The **amount of information** gained after observing the event $S = s_k$, which occurs with probability p_k , is defined as

$$I(s_k) = \log(1/p_k), \quad k = 0, 1, \dots, K-1$$

- This definition exhibits the following important properties:
 - **Property 1**: $I(s_k) = 0$, for $p_k = 1$
 - **Property 2**: $I(s_k) \ge 0$, for $0 \le p_k \le 1$
 - The occurrence of an event **never** brings about a **loss** of information
 - **Property 3**: $I(s_k) > I(s_i)$, for $p_k < p_i$
 - **Property 4** (the additive property): If s_k and s_l are statistically independent

$$I(s_k, s_l) = I(s_k) + I(s_l)$$

Prof. Tsai

Entropy (Cont.)

- The base of the logarithm specifies the units of information measure (e.g., in bits)
- For binary signaling and with the information measure in bits
 - We use a logarithm of base 2

$$I(s_k) = \log_2(1/p_k) = -\log_2(p_k), \quad k = 0, 1, \dots, K-1$$

- When $p_k = 1/2$, we have $I(s_k) = 1$ bit
- One bit is the amount of information that we gain when one of two equally likely (i.e., equiprobable) events occurs.

$$-s_0 =$$
 "0" with $p_0 = 0.5$ and $s_1 =$ "1" with $p_1 = 0.5$

Entropy (Cont.)

- During an arbitrary signaling interval, the amount of information $I(s_k)$ depends on the symbol s_k emitted by the source at the time.
- $I(s_k)$ is a **discrete random variable** that takes on the values $I(s_0)$, $I(s_1)$, ..., $I(s_{K-1})$ with probabilities p_0 , p_1 , ..., p_{K-1}
- The **entropy** of the source is defined as the **expectation** of $I(s_k)$ over all the probable values taken by the random variable S

$$H(S) = E[I(s_k)] = \sum_{k=0}^{K-1} p_k I(s_k) = \sum_{k=0}^{K-1} p_k \log_2(1/p_k)$$

- It is a measure of the average information content per source symbol
- H(S) is **independent** of the alphabet S; it depends only on the **probabilities** of the symbols in the alphabet S of the source.

Prof. Tsai

Properties of Entropy

- The entropy of the discrete random variable *S* is bounded $0 \le H(S) \le \log_2 K$
 - where K is the number of symbols in the alphabet \mathbb{S}
- H(S) = 0: if, and only if, the probability $p_k = 1$ for some k, and the remaining probabilities in the set are all zero
 - This lower bound corresponds to no uncertainty
- $H(S) = \log_2 K$: if, and only if, $p_k = 1/K$ for all k (i.e., all the symbols in the source alphabet S are **equiprobable**)
 - This upper bound corresponds to maximum uncertainty
- The proof needs the inequality:

 $\ln x \le x - 1, \quad x \ge 0$

Example: Entropy of Binary Memoryless Source

- Consider a binary source for which symbol 0 occurs with probability p_0 and symbol 1 with probability $p_1 = 1 p_0$
- We assume that the source is memoryless so that successive symbols are statistically independent

- $x\log_2 x \to 0 \text{ as } x \to 0$
- When $p_0 = 1$, H(S) = 0
- H(S) attains its **maximum value** 0.2 $H_{\text{max}} = 1$ bit when $p_1 = p_0 = 1/2$
- -H(S) is **symmetric** about $p_0 = 1/2$

Prof. Tsai

Extension of a Discrete Memoryless Source

• For high order modulation, one modulation symbol may contains **multiple** source symbols

- To consider **blocks** rather than individual symbols
- Each block consisting of *n* successive source symbols
- We may view each such block as being produced by an **extended source** with a **source alphabet** described by the **Cartesian product** of a set \mathbb{S}^n that has K^n distinct blocks
 - where *K* is the number of distinct symbols in \mathbb{S} $\mathbb{S}^{n} = \left\{ \left(s^{(1)}, s^{(2)}, \dots, s^{(n)} \right) \middle| s^{(i)} \in \mathbb{S} = \left\{ s_{0}, s_{1}, \dots, s_{K-1} \right\}, 1 \leq i \leq n \right\}$
- The probability of a symbol in \mathbb{S}^n is equal to the **product** of the probabilities of the *n* source symbols in \mathbb{S}
 - The entropy of the **extended source**, is equal to n times H(S) $H(S^n) = nH(S)$

Example: Entropy of Extended Source

- Consider a discrete memoryless source with source alphabet $\mathbb{S} = \{s_0, s_1, s_2\},\$
 - with the probabilities: $p_0 = 1/4$, $p_1 = 1/4$, $p_2 = 1/2$
- The entropy of the discrete random variable S is

$$H(S) = p_0 \log_2(1/p_0) + p_1 \log_2(1/p_1) + p_2 \log_2(1/p_2)$$

= 1/2 + 1/2 + 1/2 = 3/2 bits

- Consider the second-order extension of the source: S^2
 - with source alphabet \mathbb{S}^2

Symbols of S^2	σ_0	σ_1	$\sigma_{\!\scriptscriptstyle 2}$	σ_3	$\sigma_{\!\scriptscriptstyle 4}$	$\sigma_{\!\scriptscriptstyle 5}$	$\sigma_{\!\scriptscriptstyle 6}$	σ_7	$\sigma_{\!_{8}}$
Corresponding sequences of symbols of <i>S</i>	$s_0 s_0$	$s_0 s_1$	$s_0 s_2$	$s_1 s_0$	s_1s_1	s_1s_2	s_2s_0	s_2s_1	s_2s_2
Probability $P(\sigma_i)$	1/16	1/16	1/8	1/16	1/16	1/8	1/8	1/8	1/4

Prof. Tsai

Example: Entropy of Extended Source (Cont.)

Accordingly, the entropy of the extended source is

$$H(S^{2}) = \sum_{i=0}^{8} P(\sigma_{i}) \log_{2}(1/P(\sigma_{i}))$$

$$= \frac{1}{16} \log_{2}(16) + \frac{1}{16} \log_{2}(16) + \frac{1}{8} \log_{2}(8) + \frac{1}{16} \log_{2}(16)$$

$$+ \frac{1}{16} \log_{2}(16) + \frac{1}{8} \log_{2}(8) + \frac{1}{8} \log_{2}(8) + \frac{1}{8} \log_{2}(8) + \frac{1}{4} \log_{2}(4)$$

$$= 3 \text{ bits} = 2 \times 3/2 \text{ bits}$$

Source-Coding

Prof. Tsai

Source Coding

- **Source encoding**: The process used to **represent** the data generated by a discrete source of information
- The device that performs the representation is called a **source** encoder.
- We generally assume that the **statistics** of the source output are **known** for source encoding
 - For frequent source symbols: assigning short codewords
 - For rare source symbols: assigning long codewords
 - In order to minimize the average symbol length
 - We refer to such a source code as a variable-length code
- The **Morse code** is an example of a variable-length code.
 - Used in telegraphy

Electrical Telegraph – Morse Code

Morse Code

- Names after **Samuel Morse**, who is the inventor of electrical telegraph
- Morse Code encodes
 - The 26 English letters: A Z
 - Some non-English letters: the
 Arabic numerals and a small set of
 punctuation and procedural signals
 (e.g., wait, error, ...).
- Each Morse code symbol is formed by a sequence of dots and dashes.
 - The duration of a dash is **three** times the duration of a dot.

Prof. Tsai

Source Coding (Cont.)

- For digital communications, a source encoder must satisfy two requirements:
 - The codewords produced by the encoder are in **binary form**
 - The source code is uniquely decodable (one-to-one mapping), so that the original source sequence can be reconstructed perfectly from the encoded binary sequence
- The second requirement is particularly important for a **perfect** source code
 - Otherwise, the transmission is **inherent in errors** even for a correct reception

Source Coding Efficiency

- Consider a discrete memoryless source whose output s_k is converted by the source encoder into a binary sequence b_k
 - The symbol s_k occurs with **probability** p_k , $k = 0, 1, \dots, K-1$
 - The **length** of the binary codeword assigned to symbol s_k by the encoder is l_k (measured in **bits**)
- The average codeword length of the source encoder is

$$\overline{L} = \sum\nolimits_{k = 0}^{K - 1} {{p_k}{l_k}}$$

 The average number of bits per source symbol used in the source encoding process

Prof. Tsai

Source Coding Efficiency (Cont.)

- Let L_{\min} denote the **minimum possible** value of L.
 - But how to determine L_{\min} ?
- According to Shannon's source-coding theorem:
 - Given a discrete memoryless source whose output is denoted by the random variable S, the **entropy** H(S) imposes the following bound on the **average codeword length** \overline{L} for any source encoding scheme: $\overline{L} \ge H(S)$
 - H(S) represents a **fundamental limit** (lower bound) on \overline{L}
- The **coding efficiency** of the source encoder is defined as

$$\eta = L_{\min}/\overline{L} = H(S)/\overline{L}$$

- Because $\overline{L} \ge L_{\min}$, we clearly have $\eta \le 1$
- The source encoder is said to be **efficient** when $\eta \to 1$

Data Compaction

- A common characteristic of signals generated by **physical sources** is that, in their natural form, they contain a significant amount of **redundant information**
 - Direct transmission is wasteful of communication resources
- For **efficient signal transmission**, the redundant information should be **removed** from the signal prior to transmission.
 - This operation, with no loss of information, is ordinarily performed on a signal in digital form
 - Known as data compaction or lossless data compression
 - The source output is **efficient** in terms of the average number of bits per symbol
 - The original data can be reconstructed with no loss of information

Prof. Tsai

Data Compaction (Cont.)

- Consider a discrete memoryless source of alphabet $\{s_0, s_1, \cdots, s_{K-1}\}$ and respective probabilities $\{p_0, p_1, \cdots, p_{K-1}\}$.
- After source coding, the code has to be uniquely decodable
 - For each finite sequence of symbols, the corresponding sequence of codewords is different from the sequence of codewords corresponding to any other source sequence
- Basically, data compaction is achieved by assigning short (long)
 codewords to the most (less) frequent outcomes
- We discuss some source-coding schemes for data compaction:
 - Prefix coding
 - Huffman Coding
 - Lempel–Ziv Coding

Prefix Coding

- In the **prefix coding** scheme, the codewords must satisfy a restriction known as the **prefix condition**.
- Let the codeword assigned to source symbol s_k be denoted by $\left(m_{k_1}, m_{k_2}, \dots, m_{k_n}\right) = \left(1, 0, 0, \dots, 1\right)$
 - where each element is **0** or **1** and *n* is the **codeword length**
- The **initial part** of the codeword is represented by the elements $m_{k_1}, m_{k_2}, \dots, m_{k_i}$ for some $i \le n$
 - Any sequence made up of the initial part of the codeword is called a prefix of the codeword.
 Codeword
 11000 ...
- A **prefix code** is defined as a code in which **no codeword** is the prefix of **any other codeword**.

Prof. Tsai

Prefix Coding (Cont.)

- For prefix codes, the end of a codeword is always recognizable
 - A codeword is not the prefix of any other codeword
 codeword
 It is impossible to be a codeword
 - The decoding can be accomplished as soon as the binary sequence representing a source symbol is fully received
 - Prefix codes are also referred to as instantaneous codes
- In the following example, Code II is a prefix code, but Code I and Code III are not. Code I is not a uniquely decodable code.

Source symbol	Probability of occurrence	Code I	Code II	Code III
s_0	0.5	0	0	0
s_1	0.25	1	10	01
s_2	0.125	00	110	011
<i>S</i> ₃	0.125	11	111	0111

Decoding of Prefix Code

- The **source decoder** simply starts at the beginning of the sequence and **decodes one codeword at a time**.
- Specifically, it sets up what is equivalent to a **decision tree**
 - Starts at the **initial state**
 - Once a terminal state **emits** its symbol, the decoder is **reset** to its initial state

- The tree has an **initial state** and four **terminal states** corresponding to source symbols s_0 , s_1 , s_2 , and s_3 .

Prof. Tsai

Decoding of Prefix Code (Cont.)

- Consider, for example, the following encoded sequence:
 - $-\ 1\ 0\ 1\ 1\ 1\ 1\ 1\ 0\ 0\ 0\ \cdots$
 - This sequence is readily decoded as the source sequence: s₁ s₃ s₂ s₀ s₀ ···

Huffman Coding

- Huffman codes: an important class of prefix codes
 - A simple algorithm that computes an **optimal** prefix code for a **given distribution**
 - In the sense that the code has the **shortest expected length**
 - Construct a source code whose average codeword length approaches the fundamental limit set by **the entropy** H(S)
- The Huffman **encoding algorithm** proceeds as follows:
 - The splitting stage:
 - The source symbols are listed in order of decreasing probability.
 - The two source symbols of the **lowest probability** are assigned 0 and 1.

Prof. Tsai

Huffman Coding (Cont.)

- The **reduction stage**:
 - These two source symbols are then combined into a new source symbol
 - The **probability** of the new symbol is equal to **the sum** of the two original probabilities.
 - The list of **source symbols**, as well as **source statistics**, is **reduced in size** by one.
- The procedure, the splitting and reduction stages, is
 repeated until a final list contains only two source statistics,
 - For which (0, 1) is an optimal code
- The code for each (original) source is found by working backward and tracing the sequence of 0s and 1s

Huffman Code Construction

- Consider a discrete memoryless source with five symbols
- Following the Huffman algorithm, it reaches the end in **four steps**, resulting in a **Huffman tree** as follows
- The average codeword length is $\overline{L} = 0.4 \times 2 + 0.2 \times 2 + 0.2 \times 2 + 0.1 \times 3 + 0.1 \times 3 = 2.2 \text{ bits/symbol}$
- The entropy of the discrete memoryless source is

Prof. Tsai

Huffman Code Construction (Cont.)

- It is noteworthy that the Huffman encoding process (i.e., the Huffman tree) is **not unique** (multiple sets of codewords)
- There are two variations in the process that are responsible for the **non-uniqueness** of the Huffman code:
 - First, at each splitting stage, there is arbitrariness in the assignment of "0" and "1" to the last two source symbols.
 - Second, ambiguity arises when the **probability** of a
 combined symbol is equal to another probability in the list.
 - We may proceed by placing the probability of the new symbol as **high** as possible or as **low** as possible.
- For different Huffman codes, the codewords of the same source symbol may have **different lengths**.
 - But the average codeword length remains the same

Lempel–Ziv Coding

- A drawback of the Huffman code is that it requires knowledge of a probabilistic model of the source
 - In practice, source statistics are not always known a priori
- In the modeling of **text**, capturing **higher-order relationships** between words and phrases requires an **extremely large** codebook ⇒ Extremely high **storage requirement**
- To overcome these practical limitations, we may use the Lempel–Ziv algorithm
 - It is adaptive and simpler to implement than Huffman coding
 - The source data stream is parsed into segments
 - The shortest subsequences not encountered previously
- It uses the text itself as the dictionary for source coding
 - No source statistics are required

Prof. Tsai

Discrete Memoryless Channels

Discrete Memoryless Channels

- Information generation: Discrete memoryless sources
- Information transmission: Discrete memoryless channels
- A discrete memoryless channel is a statistical model with an input X and an output Y
 - Y is a **noisy version** of X; both X and Y are random variables
- Every unit of time, the channel accepts an input symbol X selected from an alphabet \mathcal{X} and, in response, it emits an output symbol Y from an alphabet \mathcal{Y} .
- The channel is said to be "discrete" when both of the alphabets \mathcal{X} and \mathcal{Y} have finite sizes.
- It is said to be "memoryless" when the current output symbol depends only on the current input symbol
 - Not any previous or future symbol

Prof. Tsai

Discrete Memoryless Channels (Cont.)

• A discrete memoryless channel is described in terms of an **input alphabet** $\mathbf{\mathcal{X}} = \{x_0, x_1, \cdots, x_{J-1}\}$ an **output alphabet** $\mathbf{\mathcal{Y}} = \{y_0, y_1, \cdots, y_{K-1}\}$ and a set of **transition probabilities**

$$p(y_k|x_j) = P(Y = y_k|X = x_j), \quad 0 \le j \le J - 1, \ 0 \le k \le K - 1$$

- According to probability theory, we naturally have

$$0 \le p(y_k | x_j) \le 1; \quad \sum_{k=0}^{K-1} p(y_k | x_j) = 1, \text{ for a fixed } j$$

Discrete Memoryless Channels (Cont.)

• A discrete memoryless channel can be described in the form of a **channel matrix** or **transition matrix**

$$\mathbf{P} = \begin{bmatrix} p(y_0 | x_0) & p(y_1 | x_0) & \cdots & p(y_{K-1} | x_0) \\ p(y_0 | x_1) & p(y_1 | x_1) & \cdots & p(y_{K-1} | x_1) \\ \vdots & \vdots & \ddots & \vdots \\ p(y_0 | x_{J-1}) & p(y_1 | x_{J-1}) & \cdots & p(y_{K-1} | x_{J-1}) \end{bmatrix}$$

- Suppose the event that the input $X = x_j$ occurs with probability (**prior probability**) $p(x_j) = P(X = x_j)$ for $j = 0, 1, \dots, J-1$
- The **joint probability distribution** of X and Y is given by $p(x_j, y_k) = P(X = x_j, Y = y_k) = p(y_k | x_j) p(x_j)$
- The marginal probability distribution of the output Y is

$$p(y_k) = P(Y = y_k) = \sum_{j=0}^{J-1} p(y_k | x_j) p(x_j)$$

Prof. Tsai

Binary Symmetric Channel

- The **binary symmetric channel** is a special case of the discrete memoryless channel with J = K = 2.
 - Two input symbols: $x_0 = 0$, $x_1 = 1$
 - Two output symbols: $y_0 = 0$, $y_1 = 1$
- The channel is **symmetric**: "the probability of receiving 1 if 0 is sent" is the same as "the probability of receiving 0 if 1 is sent"
- The conditional probability of error is denoted by p
 - The probability of a bit flipping
- The transition matrix is

$$\mathbf{P} = \begin{bmatrix} 1-p & p \\ p & 1-p \end{bmatrix}$$

Binary Symmetric Channel (Cont.)

- To describe the probabilistic nature of this channel, we need
 - The *a priori* probabilities of sending symbols '0' and '1' $P(x_0) = p_0$; $P(x_1) = p_1$; $p_0 + p_1 = 1$
 - The conditional probabilities of error

$$P(y_1|x_0) = P(y_0|x_1) = p$$

• The probability of receiving symbol '0' (or '1') is given by $P(y_0) = P(y_0|x_0)P(x_0) + P(y_0|x_1)P(x_1) = (1-p)p_0 + pp_1$ $P(y_1) = P(y_1|x_0)P(x_0) + P(y_1|x_1)P(x_1) = pp_0 + (1-p)p_1$

• Then, applying Bayes' rule, we obtain the two *a posteriori* probabilities

$$P(x_0|y_0) = P(y_0|x_0)P(x_0)/P(y_0) = [(1-p)p_0]/[(1-p)p_0 + pp_1]$$

$$P(x_1|y_1) = P(y_1|x_1)P(x_1)/P(y_1) = [(1-p)p_1]/[pp_0 + (1-p)p_1]$$

Prof. Tsai

Mutual Information

Conditional Entropy

- In a discrete memoryless channel, we know that
 - The channel output Y (selected from alphabet Y) is a **noisy** version of the channel input X (selected from alphabet X).
 - The entropy H(X) is a measure of the **prior uncertainty** about the **discrete source output** X.
- How can we measure the uncertainty about X after observing Y?
 - The conditional entropy of X given that $Y = y_k$ is observed

$$H(X|Y = y_k) = E_{\underline{X}} \Big[I(x_j|Y = y_k) \Big] = \sum_{j=0}^{J-1} p(x_j|y_k) \log_2(1/p(x_j|y_k))$$

- Depending on the value of $Y = y_k$
- Because Y is a **random variable**, it takes on the values $H(X|Y=y_0)$, $H(X|Y=y_1)$, ..., $H(X|Y=y_{K-1})$
 - with probabilities $p(y_0), p(y_1), \dots, p(y_{K-1})$, respectively.

Prof. Tsai

Conditional Entropy (Cont.)

• The **conditional entropy** H(X|Y) is the **expectation** of entropy $H(X|Y = y_k)$ over the output alphabet $\mathbf{\mathcal{Y}}$

$$H(X|Y) = E_{\underline{Y}} \Big[H(X|Y = y_k) \Big] = \sum_{k=0}^{K-1} H(X|Y = y_k) p(y_k)$$

$$= \sum_{k=0}^{K-1} \sum_{j=0}^{J-1} p(x_j|y_k) p(y_k) \log_2(1/p(x_j|y_k))$$

$$= \sum_{k=0}^{K-1} \sum_{j=0}^{J-1} p(x_j, y_k) \log_2(1/p(x_j|y_k))$$

$$= \sum_{k=0}^{K-1} \sum_{j=0}^{J-1} p(x_j, y_k) \log_2(1/p(x_j|y_k))$$

$$= H(X|Y)$$

$$= H(X|Y)$$

- The conditional entropy, H(X|Y), is the average amount of uncertainty remaining about the channel input X after the channel output Y has been observed.
 - Some uncertainty has been removed through transmission

Mutual Information

- The conditional entropy H(X|Y) relates the **channel output** Y to the **channel input** X.
- The **entropy** H(X) accounts for the uncertainty about the channel input **before observing** the channel output.
- The **conditional entropy** H(X|Y) accounts for the uncertainty about the channel input **after observing** the channel output.
- The definition the **mutual information** of the channel:

$$I(X;Y) = H(X) - H(X|Y)$$

It is a measure of the uncertainty about the channel input,
 which is resolved by observing the channel output.

Prof. Tsai

Mutual Information (Cont.)

• The mutual information of a channel can also be defined as

$$I(Y;X) = H(Y) - H(Y|X)$$

- It is a measure of the uncertainty about the channel output that is resolved by sending the channel input.
- Although the two definitions look different, but they could be used interchangeably.

Properties of Mutual Information

PROPERTY 1: The mutual information of a channel is symmetric in the sense that

$$I(X;Y) = I(Y;X)$$

PROPERTY 2: The mutual information is always **nonnegative**

$$I(X;Y) \ge 0$$

- We cannot lose information, on the average, by observing H(X,Y)the output of a channel.
- **PROPERTY 3:** The mutual information of a channel is channel input and channel output

related to the **joint entropy** of the channel input and channel output
$$I(X;Y) = H(X) + H(Y) - H(X,Y)$$

Prof. Tsai 45

Meaning of Mutual Information

The definition the **mutual information** of the channel:

$$I(X;Y) = H(X) - H(X|Y)$$

- If the channel output is always the same, H(X|Y) = H(X)
 - The **mutual information** is equal to $I(X; Y) = \mathbf{0}$
 - No information is resolved by observing the channel output
- If the channel output is always equal to the input (i.e., a perfect noiseless channel), H(X|Y) = 0
 - The **mutual information** is equal to I(X; Y) = H(X)
 - Complete information of the channel input can be resolved by observing the channel output

Channel Capacity

Prof. Tsai

Channel Capacity

- Consider a discrete memoryless channel with input alphabet \mathcal{X} , output alphabet \mathcal{Y} , and transition probabilities $p(y_k|x_i)$
- The **mutual information** of the channel is defined by

$$I(X;Y) = H(X) - H(X|Y) = H(Y) - H(Y|X)$$

$$= \sum_{k=0}^{K-1} \underbrace{p(y_k) \log_2(1/p(y_k))} - \sum_{k=0}^{K-1} \sum_{j=0}^{J-1} p(x_j, y_k) \log_2(1/p(y_k|x_j))$$

$$= \sum_{k=0}^{K-1} \underbrace{\sum_{j=0}^{J-1} p(x_j, y_k)} \left[-\log_2(p(y_k)) \right] + p(x_j, y_k) \log_2(p(y_k|x_j))$$

$$I(X;Y) = H(X) - H(X|Y)$$

$$H(X|Y) = \sum_{k=0}^{K-1} \underbrace{\sum_{j=0}^{J-1} p(x_j, y_k) \log_2(1/p(x_j|y_k))}$$

Channel Capacity (Cont.)

Hence, the **mutual information** of the channel is defined by

$$I(X;Y) = \sum_{k=0}^{K-1} \sum_{j=0}^{J-1} p(x_j, y_k) \log_2(p(y_k|x_j)/p(y_k))$$

 $I(X;Y) = \sum_{k=0}^{K-1} \sum_{j=0}^{J-1} p(x_j, y_k) \log_2 \left(p(y_k | x_j) / p(y_k) \right)$ Then, according to $\log_2 \left(p(y_k | x_j) / - \log_2 \left(p(y_k) \right) = \log_2 \left(p(y_k | x_j) / p(y_k) \right)$

$$p(x_j, y_k) = p(y_k | x_j) p(x_j); \quad p(y_k) = \sum_{j=0}^{J-1} p(y_k | x_j) p(x_j)$$

Finally, we have

$$I(X;Y) = \sum_{k=0}^{K-1} \sum_{j=0}^{J-1} \underline{p(y_k | x_j)} \underline{p(x_j)} \log_2 \left(\underline{p(y_k | x_j)} / \sum_{j=0}^{J-1} \underline{p(y_k | x_j)} \underline{p(x_j)} \right)$$

- The mutual information I(X;Y) depends on
 - The probability distribution of the **channel input** and
 - The transition probability distribution of the **channel**

$$I(X;Y) = H(X) - H(X|Y)$$

Prof. Tsai 49

Channel Capacity (Cont.)

- The two probability distributions $p(x_i)$ and $p(y_k|x_i)$ are obviously independent of each other.
- Given the channel's transition probability distribution $\{p(y_k|x_i)\}$, the channel capacity is defined in terms of the mutual **information** between the channel input and output:

$$C = \max_{\{p(x_j)\}} I(X;Y) \quad \text{bits per channel use} \qquad \qquad \text{Low } I(X;Y)$$

$$H(X) \qquad \qquad \text{Low } I(X;Y)$$

Subject to
$$p(x_j) \ge 0$$
, $\forall j$; $\sum_{j=0}^{J-1} p(x_j) = 1$ High $H(X;Y)$

- The channel capacity of a discrete memoryless channel is defined as the maximum mutual information I(X;Y) in any single use of the channel (i.e., signaling interval)
 - where the maximization is over all possible input probability distributions $\{p(x_i)\}\$ on X.

Channel Capacity of Binary Symmetric Channel

- Consider the binary symmetric channel defined by the conditional probability of error p.
- The entropy H(X) is maximized when the channel input probability $p(x_0) = p(x_1) = 1/2$

- The mutual information I(X;Y) is **similarly maximized**

Thus, the channel capacity is

$$C = I(X;Y)\Big|_{p(x_0) = p(x_1) = 1/2} - \mathbf{H}(\mathbf{p})$$

= 1 + $p \log_2 p + (1-p) \log_2 (1-p)$

Using the definition of the entropy function, the channel capacity is

$$C = 1 - H(p)$$

Prof. Tsai 51

Channel Capacity of BSC (Cont.)

- The channel capacity C varies with the probability of error (i.e., transition probability) p in a **convex** manner
 - It is **symmetric** about p = 1/2
- When the channel is **noise free**, permitting us to set p = 0
 - The channel capacity C attains its **maximum value** of **one** bit per channel use
 - Which is exactly the information in each channel input
- When the conditional probability of error p = 1/2
 - The channel capacity C attains its **minimum value** of **zero**
 - The channel is said to be **useless** in the sense that the channel input and output become statistically independent
- How about the condition with p = 1? C = 1 H(p) = 1

Channel-Coding Theorem

Prof. Tsai

Error-Free Transmission

- Consider a **binary symmetric channel** defined by the conditional probability of error p > 0.
 - The channel capacity is C < 1
- The error probability for the transmission of **an information** bit through the BSC channel is p > 0.
 - The channel capacity C is less than the entropy of a bit.
 - If an error occurs, information of the bit is lost.
- How to prevent **information loss** through the BSC channel?
 - Achieve error-free transmission through a BSC with p > 0.
 - All information is preserved at the destination.

Channel Coding

- The inevitable presence of **noise** in a channel causes **detection errors** at the receiver of a digital communication system.
- In a relatively noisy channel with a low SNR (e.g., wireless communication channels), the probability of error may higher than 10^{-1} .
 - This level of **reliability** is generally **unacceptable**
- For many applications, a probability of error lower than or equal to 10^{-6} is often a necessary practical requirement.
 - We resort to the use of **channel coding**. With good performance

Prof. Tsai 55

Channel Coding (Cont.)

- The design goal of channel coding is to **increase the resistance** of a digital communication system **to channel noise**.
- Specifically, channel coding consists of
 - At the transmitter: Mapping the incoming data sequence into a channel input sequence ⇒ channel encoder
 - At the receiver: inverse mapping the channel output sequence into an output data sequence ⇒ channel decoder
 - Goal: the overall effect of channel noise on the system is minimized
- The approach taken is to introduce **redundancy** in the channel encoder **in a controlled manner**, so as to **reconstruct** the original source sequence in the channel decoder **as accurately as possible**.

Channel Coding (Cont.)

- Consider one class of channel-coding: block codes
 - The message sequence is **subdivided** into sequential blocks
 - Each block contains k bits
 - Each k-bit block is **mapped into** an n-bit block, where n > k
 - The number of **redundant** bits added by the encoder to each

transmitted block is n - k bits

• The ratio k/n is called the **code rate** r = k/n

Time duration of a block: TInformation rate: $R_b = k/T$ Coded symbol rate: $n/T = R_b/r$ For a fixed R_b : Code rate $r \downarrow$

- where r is less than unity $(r \le 1)$ \Rightarrow Transmission rate \uparrow , $B \uparrow$
- For a prescribed k, the code rate r (and, therefore, the system's coding efficiency) approaches zero as the block length n approaches infinity.

Prof. Tsai 57

Channel Coding (Cont.)

- To accurately reconstruct the original source sequence, the average probability of symbol error of the decoded data sequence must be arbitrarily low.
- Does a channel-coding scheme exist? such that,
 - The probability that a message bit will be in error is less than any positive number ε , and
 - The channel-coding scheme is **efficient** in that the **code rate** need not be too small
- The answer to this fundamental question is "yes."
 - The answer to the question is provided by Shannon's second theorem in terms of the channel capacity C

Channel-Coding Theorem

- Consider a discrete memoryless source that has the source alphabet \mathbb{S} and entropy H(S) bits per source symbol.
- Assume that the source **emits symbols** once every $T_{\rm s}$ seconds
 - The average information rate: $H(S)/T_s$ bits per second
 - The decoder delivers decoded symbols to the destination at the same source rate (i.e., one symbol every T_s seconds)
- For example: H(S) = 4 bits and $T_s = 0.1$ sec
 - The average information rate: $H(S)/T_s = 40$ bps

Prof. Tsai 59

Channel-Coding Theorem (Cont.)

- The discrete memoryless channel has a **channel capacity** equal to *C* bits per use of the channel.
- Assume that the channel can be used once every $T_{\rm c}$ seconds
 - The channel capacity per unit time: C/T_c bits per second
 - The **maximum rate** of information transfer over the channel to the destination: C/T_c bits per second C: Power (error rate)
- For example: C = 0.8 bits and $T_c = 0.01$ sec T_c : Bandwidth
 - The **maximum rate** of information transfer: $C/T_c = 80$ bps

Channel-Coding Theorem (Cont.)

- Shannon's second theorem: the **channel-coding theorem**
- Let a **discrete memoryless source** with an alphabet \mathbb{S} have entropy H(S) for random variable S and produce symbols once every T_s seconds.
- Let a **discrete memoryless channel** have capacity C and be used once every T_c seconds.
- Then, if $H(S)/T_s \le C/T_c$ there **exists** a **coding scheme** for which the source output can be transmitted over the channel and be reconstructed with an arbitrarily small probability of error.
- The parameter C/T_c is called the **critical rate**.
 - When $H(S)/T_s = C/T_c$, the system is said to be signaling at the critical rate.

Prof. Tsai

Channel-Coding Theorem (Cont.)

- Conversely, if $H(S)/T_s > C/T_c$ it is **not possible** to transmit information over the channel and reconstruct it with an arbitrarily small probability of error.
- The channel-coding theorem is the single most important result of information theory.
 - The theorem specifies the channel capacity C as a fundamental limit on the rate at which the transmission of reliable error-free messages can take place over a discrete memoryless channel.

Channel capacity

Error is inevitable

Error-free transmission is possible

Information entropy

Channel-Coding Theorem (Cont.)

- However, it is important to note **two limitations** of the theorem:
- The channel-coding theorem does not show us how to construct a good code.
 - The theorem should be viewed as an existence proof in the sense that
 - If $H(S)/T_s \le C/T_c$ is satisfied, then good codes do exist.
- The theorem **does not** have a **precise result** for the probability of symbol error after decoding the channel output.
 - The theorem only tells us that the probability of symbol error tends to zero as the length of the code increases
 - Providing that the condition $H(S)/T_s \le C/T_c$ is satisfied

Prof. Tsai 63

Channel-Coding Theorem for BSC

- Consider a **discrete memoryless source** that emits equally likely binary symbols (0s and 1s) once every T_s seconds.
 - The source entropy: one bit per source symbol $\Rightarrow H(S) = 1$
 - The information rate: $1/T_s$ bits per second
- The source sequence is applied to a **channel encoder**
 - The code rate: r
 - The **encoded symbol rate**: $1/T_c$ symbols per second
- If the channel encoder engages a binary symmetric channel once every $T_{\rm c}$ seconds.
 - The channel capacity per unit time: C/T_c bits per second
 - *C* is determined by the channel transition probability p $C = 1 + p \log_2 p + (1 p) \log_2 (1 p)$

Channel-Coding Theorem for BSC (Cont.)

· According to the channel-coding theorem, if

$$1/T_{\rm s} \leq C/T_{\rm c}$$

- The probability of error can be made arbitrarily low by the use of a suitable channel encoding scheme
- The ratio T_c/T_s equals the **code rate** of the channel encoder

$$r = T_{\rm c}/T_{\rm s}$$

• Hence, we may restate the condition

$$1/T_{\rm s} \le C/T_{\rm c} \implies r \le C$$
 $\implies r = k/n = T_{\rm c}/T_{\rm s}$

 $k \text{ bits} \Rightarrow kT_{\text{s}} \text{ sec}$ $\Rightarrow kT_{\text{s}}/T_{\text{c}} \text{ bits} = n \text{ bits}$ $\Rightarrow r = k/n = T_{\text{c}}/T_{\text{s}}$

• That is, for $r \le C$, there exists a code (with code rate r less than or equal to channel capacity C) capable of achieving an arbitrarily low probability of error.

Prof. Tsai 65

Example: Repetition Code

- Consider a BSC with transition probability $p = 10^{-2}$
 - The channel capacity: C = 0.9192
- Hence, for any $\varepsilon > 0$ and $r \le C = 0.9192$, there exists a code of **large enough** length n, code rate r, and an appropriate decoding algorithm, such that,
 - When the coded bit stream is sent over the given channel, the average probability of decoding error is less than ε .
- In the following, we consider a simple coding scheme that involves the use of a **repetition code**.
 - Each bit of the message is repeated several times.
 - Let each bit (0 or 1) be repeated n (an **odd** integer) times.
 - For example, for n = 3, we transmit **0** and **1** as **000** and **111**

Example: Repetition Code (Cont.)

10-2

 10^{-3}

 10^{-4}

 10^{-5}

 10^{-6}

Average probability of error, P_e

 $p = 10^{-2}$

Repetition code

A large

gape

 \parallel

Not a

- Intuitively, the channel decoder uses a majority rule for decoding:
 - In a block of *n* repeated bits, if the number of 0s exceeds the number of 1s, the decoder decides in favor of a 0
 - Otherwise, it decides in favor of a 1
- An error occurs when m + 1 or more bits out of n = 2m + 1 bits are received incorrectly.

Prof. Tsai 67

Differential Entropy and Mutual Information for Continuous Ensembles

Differential Entropy

- In addition to the **discrete sources**, we extend these concepts to **continuous** random variables.
 - For the description of another fundamental limit in information theory
- Consider a continuous random variable X with the **probability** density function $f_X(x)$.
- We define the **differential entropy** of X as

$$h(X) = \int_{-\infty}^{\infty} f_X(x) \log_2 \left[\frac{1}{f_X(x)} \right] dx$$

- To distinguish from the ordinary or absolute **entropy**
- Although h(X) is a useful mathematical quantity to know, it is **not**, in any sense, **a measure of the randomness** of X.

Prof. Tsai

Differential Entropy (Cont.)

- In a limiting form, the **continuous** random variable *X* is viewed as a **discrete** random variable
 - $-x_k = k\Delta x$, where $k = 0, \pm 1, \pm 2, \cdots$, and Δx approaches zero
- By definition, X is in the interval $[x_k, x_k + \Delta x]$ with **probability** $f_X(x_k) \Delta x$
- The **ordinary entropy** of the **continuous random variable** *X* takes the limiting form:

$$H(X) = \lim_{\Delta x \to 0} \sum_{k = -\infty}^{\infty} f_X(x_k) \Delta x \log_2 \left(\frac{1}{f_X(x_k) \Delta x} \right)$$

$$= \lim_{\Delta x \to 0} \left[\sum_{k = -\infty}^{\infty} f_X(x_k) \log_2 \left(\frac{1}{f_X(x_k)} \right) \Delta x - \sum_{k = -\infty}^{\infty} f_X(x_k) \Delta x \times \log_2 \Delta x \right]$$

Differential Entropy (Cont.)

$$H(X) = \int_{-\infty}^{\infty} f_X(x_k) \log_2 \left(\frac{1}{f_X(x_k)}\right) dx - \lim_{\Delta x \to 0} \left[\log_2 \Delta x \int_{-\infty}^{\infty} f_X(x_k) dx\right]$$
$$= h(X) - \lim_{\Delta x \to 0} \log_2 \Delta x$$

- In the limit as Δx approaching zero, the term " $-\log_2 \Delta x$ " approaches infinity.
 - The entropy H(X) of a continuous random variable X is infinity
- The evaluation of entropy for a **continuous** random variable is **infeasible**
- We only adopt the **differential entropy** h(X) as a measure
 - The term " $-\log_2 \Delta x$ " is regarded as a reference

Prof. Tsai

Differential Entropy (Cont.)

• When we have a **continuous** random vector \mathbf{X} consisting of n random variables X_1, X_2, \dots, X_n , we define the differential entropy of \mathbf{X} as the n-fold integral

$$h(\mathbf{X}) = \int_{-\infty}^{\infty} f_{\mathbf{X}}(\mathbf{x}) \log_{2} \left(\frac{1}{f_{\mathbf{X}}(\mathbf{x})}\right) d\mathbf{x}$$

- where $f_{\mathbf{X}}(\mathbf{x})$ is the joint probability density function of \mathbf{X}

Channel Capacity Based on Differential Entropy

- Channel capacity is the information transmitted over a channel
 - The **mutual information** between channel input and output
 - Evaluation of channel capacity based on entropy for a continuous channel is impossible
- For the difference between two entropy terms that have a common reference, the information will be the same as the difference between the corresponding differential entropy terms

$$H(X) - H(Y) = \left[h(X) - \lim_{\Delta x \to 0} \log_2 \Delta x\right] - \left[h(Y) - \lim_{\Delta y \to 0} \log_2 \Delta y\right]$$
$$= h(X) - h(Y) \quad \text{for } \Delta x = \Delta y$$

- " $-\log_2 \Delta x$ " is the common reference for input and output
- Channel capacity is evaluated based on differential entropy

Prof. Tsai

Example: Uniform Distribution

- Consider a random variable *X* uniformly distributed over the interval (0, *a*).
- The probability density function of X is

$$f_X(x) = \begin{cases} 1/a, & 0 < x < a \\ 0, & \text{otherwise} \end{cases}$$

• The **differential entropy** of X is

$$h(X) = \int_0^a (1/a) \times \log_2(a) dx = \log_2(a)$$

- Note that $\log_2 a < 0$ for a < 1.
- Unlike a discrete random variable, the **differential entropy** of a **continuous** random variable can be a **negative** value.
 - The value of a pdf could be larger than 1

Distribution with the Max. Differential Entropy

- The entropy of the discrete random variable S is bounded $0 \le H(S) \le \log_2 K$
 - where K is the number of symbols in the alphabet \mathbb{S}
- $H(S) = \log_2 K$: if, and only if, $p_k = 1/K$ for all k (i.e., all the symbols in the source alphabet S are equiprobable)
 - This upper bound corresponds to maximum uncertainty
- The discrete channel capacity is defined as

$$C = \max_{\{p(x_j)\}} I(X;Y)$$
 bits per channel use

Subject to
$$p(x_j) \ge 0$$
, $\forall j$; $\sum_{j=0}^{J-1} p(x_j) = 1$

What kind of **distribution** has the **maximum** differential entropy (under a fixed variance)?

Prof. Tsai 75

Relative Entropy of Continuous Distributions

- Consider a pair of continuous random variables X and Y whose respective **probability density functions** are denoted by $f_X(x)$ and $f_{\nu}(x)$ for the same dummy variable (argument) x.
- The relative entropy (a measurement of the similarity) of the random variables X and Y is defined by

$$D(f_Y|f_X) = \int_{-\infty}^{\infty} f_Y(x) \log_2 \left[f_Y(x) / f_X(x) \right] dx$$
- where $f_X(x)$ is viewed as the "**reference**" **distribution**

- If $f_X(x) = f_Y(x)$, the relative entropy is $D(f_Y|f_X) = 0$
- Based on some fundamental properties, we have $D(f_Y | f_X) \ge 0$
- Hence, we have the **differential entropy** of Y

$$D(f_{Y}|f_{X}) = -\int_{-\infty}^{\infty} f_{Y}(x)\log_{2}\left[1/f_{Y}(x)\right]dx + \int_{-\infty}^{\infty} f_{Y}(x)\log_{2}\left[1/f_{X}(x)\right]dx \ge 0$$

$$\Rightarrow h(Y) = \int_{-\infty}^{\infty} f_{Y}(x)\log_{2}\left[1/f_{Y}(x)\right]dx \le \int_{-\infty}^{\infty} f_{Y}(x)\log_{2}\left[1/f_{X}(x)\right]dx$$

Example: Gaussian Distribution

- Suppose two random variables, X and Y
 - X and Y have the **common mean** μ and **variance** σ^2
 - -X is Gaussian distributed (Y may be non-Gaussian)

$$f_X(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right]$$

• Based on the **relative entropy** of X and Y

$$h(Y) \le \int_{-\infty}^{\infty} f_Y(x) \log_2 \left[1 / f_X(x) \right] dx$$

$$\le \int_{-\infty}^{\infty} f_Y(x) \times \left[\log_2 \left(\sqrt{2\pi} \sigma \right) + \log_2 \left(\exp \left[+ \frac{(x - \mu)^2}{2\sigma^2} \right] \right) \right] dx$$

- By changing the base of the logarithm from 2 to e = 2.7183
 - where e is the base of the **natural logarithm** (Euler's number)

Prof. Tsai

Example: Gaussian Distribution

$$h(Y) \le \int_{-\infty}^{\infty} f_Y(x) \times \left[\log_2\left(\sqrt{2\pi}\sigma\right) + \log_2\left(\exp\left[+\frac{(x-\mu)^2}{2\sigma^2}\right]\right) \right] dx$$

$$\le \log_2 e \times \int_{-\infty}^{\infty} f_Y(x) \left[\ln\left(\sqrt{2\pi}\sigma\right) + \frac{(x-\mu)^2}{2\sigma^2}\right] dx$$

• Given the mean μ and variance σ^2 of Y, we have

$$\int_{-\infty}^{\infty} f_Y(x) dx = 1; \quad \int_{-\infty}^{\infty} (x - \mu)^2 f_Y(x) dx = \sigma^2$$

• Therefore (as shown in the next page),

$$h(Y) \le \frac{1}{2} \log_2 \left(2\pi e \sigma^2 \right) = h(X) \longleftarrow f_Y(x) \Rightarrow f_X(x)$$

• If X is a **Gaussian** random variable and Y is a **non-Gaussian** random variable, then h(Y) < h(X)

Example: Gaussian Distribution (Cont.)

• If we use $f_X(x)$ to substitute $f_Y(x)$, we have

$$h(X) = \int_{-\infty}^{\infty} f_X(x) \log_2 \left[1/f_X(x) \right] dx = \frac{1}{2} \log_2 \left(2\pi e \sigma^2 \right) \Rightarrow h(Y) \leq h(X)$$

$$h(Y) \leq \log_2 e \times \int_{-\infty}^{\infty} f_Y(x) \left[\frac{(x-\mu)^2}{2\sigma^2} + \ln\left(\sqrt{2\pi}\sigma\right) \right] dx$$

$$= \log_2 e \times \left[\frac{1}{2\sigma^2} \int_{-\infty}^{\infty} (x-\mu)^2 f_Y(x) dx + \ln\left(\sqrt{2\pi}\sigma\right) \int_{-\infty}^{\infty} f_Y(x) dx \right]$$

$$= \log_2 e \times \left[\frac{1}{2} \ln(e) + \frac{1}{2} \ln(2\pi\sigma^2) \right] = \log_2 e \times \frac{1}{2} \ln(2\pi e\sigma^2)$$

$$= \frac{1}{2} \log_2 \left(2\pi e\sigma^2 \right) = h(X)$$

Prof. Tsai

Example: Gaussian Distribution (Cont.)

- Two entropic properties of a random variable:
 - For any finite variance, a Gaussian random variable has the largest differential entropy attainable by any other random variable.
 - The entropy of a Gaussian random variable is uniquely determined by its variance (i.e., independent of the mean).

$$h(Y) \le \frac{1}{2}\log_2(2\pi e\sigma^2) = h(X)$$

• The Gaussian channel model is widely used as a conservative model in the study of digital communication systems.

Mutual Information of Continuous Distributions

The mutual information between a pair of continuous random variables *X* and *Y* is defined as follows:

$$I(X;Y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X,Y}(x,y) \log_2 \left[f_{X|Y}(x|y) / f_X(x) \right] dx dy$$

$$I(X;Y) = \sum_{k=0}^{K-1} \sum_{j=0}^{J-1} p(x_j, y_k) \log_2 \left(p(y_k|x_j) / p(y_k) \right)$$

- where $f_{X|Y}(x|y)$ is the **conditional pdf** of X given Y = y
- The mutual information between the pair of Gaussian random variables has the following properties:

$$I(X;Y) = I(Y;X); \quad I(X;Y) \ge 0;$$

 $I(X;Y) = h(X) - h(X|Y) = h(Y) - h(Y|X)$
– where the **conditional differential entropy** of X given Y is

$$h(X|Y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X,Y}(x,y) \log_2 \left[1/f_{X|Y}(x|y) \right] dx dy$$

Prof. Tsai 81

Information Capacity Theorem

Band-limited, Power-limited Gaussian Channel

- In the following, we formulate the information capacity for a band-limited, power-limited Gaussian channel
- To be specific, consider a zero-mean stationary process X(t) that is **band-limited** to B Hz
 - $-X_k$, $k=1, 2, \dots, K$: the **continuous** random variables obtained by uniformly sampling at a rate of 2B samples per second
 - 2B samples per second: the Nyquist rate
- Suppose that the K samples are transmitted in T seconds over a noisy channel, also **band-limited** to $B Hz \Rightarrow K = 2BT$
- The channel output is perturbed by additive white Gaussian noise (AWGN) of zero mean and power spectral density $N_0/2$

Prof. Tsai

Band-limited, Power-limited Gaussian Channel

• The corresponding samples of the channel output Y_k are

$$Y_k = X_k + N_k, \quad k = 1, 2, \dots, K$$

- $-N_k$ is **Gaussian** distributed with zero mean and variance N_0B
- $-Y_k$, $k = 1, 2, \dots, K$, are statistically independent
- A discrete-time, memoryless Gaussian channel
- Typically, the transmitter is power limited
 - Define the cost as $E[(X_k)^2] = P$, $k = 1, 2, \dots, K$
 - where P is the average transmitted power
- The power-limited Gaussian channel models many communication channels
 - Including line-of-sight (LOS) radio and satellite links

Information Capacity

- The **information capacity** of the channel is defined as the maximum of the mutual information between the channel input X_k and the channel output Y_k
 - Over the distributions of X_k that satisfy the **power** constraint

$$C = \max_{f_{X_k}(x)} I(X_k; Y_k)$$
, Subject to $E[X_k^2] = P$

- $I(X_k; Y_k)$: the **mutual information** between X_k and Y_k $I(X_k; Y_k) = h(Y_k) - h(Y_k|X_k)$
- Since X_k and N_k are **independent** random variables
 - Given X_k , the distribution of Y_k depends only on N_k

$$h(Y_k|X_k) = h(N_k)$$

$$\Rightarrow I(X_k;Y_k) = h(Y_k) - h(N_k)$$

$$Y_k = X_k + N_k$$

Prof. Tsai 85

Information Capacity (Cont.)

$$I(X_k; Y_k) = h(Y_k) - h(N_k)$$

- With $h(N_k)$ being **independent** of the distribution of X_k
 - Maximizing $I(X_k; Y_k)$ is equivalent to maximizing the differential entropy $h(Y_k)$
- To maximize $h(Y_k)$, Y_k has to be a **Gaussian** random variable
 - The channel output Y_k must be a **noise-like** process
 - Since N_k is **Gaussian** by assumption, the sample X_k of the channel input must be Gaussian too $Y_k = X_k + N_k$ We may state that maximizing the information capacity is
- - To choose samples of the channel input from a **noise-like** Gaussian-distributed process of average power (variance) P $C = I(X_k; Y_k): X_k$ Gaussian, Subject to $E[X_k^2] = P$

Information Capacity (Cont.)

- For the evaluation of the **information capacity** C
 - The variance of output sample Y_k equals $P + \sigma^2$
 - Because X_k and N_k are statistically **independent**
 - P: variance of X_k ; $\sigma^2 = N_0 B$: variance of N_k
 - The differential entropy is $h(Y_k) = \frac{1}{2} \log_2 \left[2\pi e \left(P + \sigma^2 \right) \right]$
 - The variance of the noisy sample N_k equals σ^2 ; hence,

$$h(N_k) = \frac{1}{2} \log_2 \left(2\pi e \sigma^2 \right)$$

 Accordingly, the information capacity of the channel, in bits per channel use, is

$$C' = \frac{1}{2}\log_2\left[2\pi e(P + \sigma^2)\right] - \frac{1}{2}\log_2\left[2\pi e\sigma^2\right] = \frac{1}{2}\log_2\left(1 + P/\sigma^2\right)$$

Prof. Tsai

Information Capacity (Cont.)

- With the channel used K times for the transmission of K samples of the process X(t) in T seconds, we find that
 - The information capacity **per unit time** is (K/T) times C'
 - The number K equals 2BT
 - The information capacity of the channel **per unit time** is

$$C = KC'/T = B \log_2 \left\lceil 1 + P/(N_0 B) \right\rceil$$

- where N_0B is the **total noise power** at the channel output
- The **information capacity, per unit time,** of a continuous channel of bandwidth B Hz, perturbed by AWGN of power spectral density $N_0/2$ and limited in bandwidth to B, is given by

$$C = B \log_2 \left(1 + \frac{P}{N_0 B} \right)$$

Information Capacity (Cont.)

- The **information capacity law** is one of the most remarkable results of Shannon's information theory.
- The information capacity *C* depends on three key system parameters: **channel bandwidth**, **average transmitted power**, and **power spectral density of channel noise**.
 - The dependence of C on channel bandwidth B is linear
 - The dependence of C on signal-to-noise ratio $P/(N_0B)$ is logarithmic

$$C = B \log_2 \left(1 + \frac{P}{N_0 B} \right)$$

Prof. Tsai

Information Capacity (Cont.)

- To **increase** the information capacity of a continuous communication channel
 - By expanding the bandwidth: much easier
 - By increasing the transmitted power: harder
 - Bandwidth and power are the two major resources
- It is **not possible** for **error-free transmission** at a rate **higher than** *C* bits per second by **any encoding system**.
- Hence, the channel capacity law defines the **fundamental limit** on the permissible rate of **error-free transmission** for a **power-limited**, **band-limited Gaussian** channel.
 - To approach this limit, the transmitted signal must have statistical properties approximating those of white Gaussian noise.

Implications of the Information Capacity Law

Prof. Tsai

Information / Coding / Modulation

- For comparison, we define
 - **Information bits:** bit rate R_b , bit energy E_b , bit interval T_b
 - Coded bits: bit rate R_c , bit energy E_c , bit interval T_c
 - Modulation symbol: symbol rate R_s , energy E_s , interval T_s
- Assume that $R_b = 30$ kbps, $E_b = 12$, $T_b = 60$
- If the code rate is r = 1/2, and the bandwidth is B = 20 kHz
 - $-R_c = 60$ kbps, energy $E_c = 6$, interval $T_c = 30$
 - 8-PSK: $R_s = 20$ ksps, energy $E_s = 18$, interval $T_s = 90$
- If the code rate is r = 1/4, and the bandwidth is B = 20 kHz
 - $-R_c = 120$ kbps, energy $E_c = 3$, interval $T_c = 15$
 - 64-QAM: $R_s = 20$ ksps, energy $E_s = 18$, interval $T_s = 90$

Different modulation and coding

Information/Coding/Modulation (Cont.)

- Assume that $R_{\rm b} = 30$ kbps, $E_{\rm b} = 12$, $T_{\rm b} = 60$
- If the code rate is r = 1/4, and the bandwidth is B = 40 kHz
 - $-R_c = 120$ kbps, energy $E_c = 3$, interval $T_c = 15$
 - 8-PSK: $R_s = 40$ ksps, energy $E_s = 9$, interval $T_s = 45$
- If the code rate is r = 0.1, and the bandwidth is B = 100 kHz

Different modulation

- $-R_c = 300$ kbps, energy $E_c = 1.2$, interval $T_c = 6$
- 8-PSK: $R_s = 100$ ksps, energy $E_s = 3.6$, interval $T_s = 18$
- It is possible to use various types of code rate/modulation under the same information rate R_b and the same bandwidth B.
 - However, the required channel capacity is **the same** $C \ge R_b$.
- For theoretical comparison, we only consider the information rate R_b , the capacity C, the bandwidth B, and the SNR E_b/N_0 .

Prof. Tsai 93

Information Capacity Law

- Consider an **ideal system** that transmits data at a bit rate R_b equal to the information capacity C. (information bit rate)
- The average transmitted power is $P = E_b/T_b = E_bR_b = E_bC$
 - where $E_{\rm b}$ is the transmitted energy per bit
- Accordingly, the ideal system is defined by the equation

$$C = B \log_2 \left(1 + \frac{P}{N_0 B} \right) \qquad \frac{C}{B} = \log_2 \left(1 + \frac{E_b C}{N_0 B} \right) \qquad \begin{array}{c} \textbf{R}_b \text{: information rate} \\ \textbf{(before channel coding)} \end{array}$$

The signal energy-per-bit to noise power spectral density ratio, E_b/N_0 , in terms of the ratio C/B for the ideal system is $\frac{E_b}{N_0} = \frac{2^{C/B} - 1}{C/B} = \frac{2^{R_b/B} - 1}{R_b/B}$

$$\frac{E_{b}}{N_{c}} = \frac{2^{C/B} - 1}{C/B} = \frac{2^{R_{b}/B} - 1}{R_{b}/B}$$

Bandwidth-efficiency diagram: A plot of the bandwidth efficiency R_b/B versus E_b/N_0

Bandwidth-Efficiency Diagram

• 1. For infinite channel bandwidth, the minimum SNR approaches the limit

$$(E_{\rm b}/N_{\rm 0})_{\infty} = \lim_{B \to \infty} (E_{\rm b}/N_{\rm 0})$$

$$= \ln 2 = 0.693 = -1.6 \text{ dB}$$
- **Shannon limit** for an AWGN channel

$$\lim_{B \to \infty} (E_b/N_0) = \lim_{B \to \infty} \frac{2^{C/B} - 1}{C/B}$$

$$= \lim_{x \to 0} (e^{\ln 2 \times x} - 1)/x, \quad x = C/B$$

$$\approx \frac{(1 + \ln 2 \times x) - 1}{x} = \ln 2$$

Prof. Tsai

Bandwidth-Efficiency Diagram (Cont.)

 $(E_{\rm b}/N_0)_{\infty} = -1.6 \text{ dB}$

Minimum required SNR for efficient transmission

• The corresponding limiting value of channel capacity

$$C_{\infty} = \lim_{B \to \infty} C = (P/N_0) \log_2 e$$

Bandwidth-Efficiency Diagram (Cont.)

- 2. The capacity boundary is defined by the curve for the critical bit rate $R_b = C$.
 - For any point on this boundary, we have error-free transmission or not with probability of 1/2.

Prof. Tsai

Bandwidth-Efficiency Diagram (Cont.)

- 3. The diagram highlights potential **trade-offs** among three quantities:
 - $-E_b/N_0$, R_b/B , and the symbol error rate P_e
 - For the operating point along a **horizontal line**:

 trading $P_{\rm e}$ versus $E_{\rm b}/N_0$ for a fixed $R_{\rm b}/B$
 - For the operating point along a **vertical line**: trading P_e versus R_b/B for a fixed E_b/N_0

Example: M-ary PCM

- Considering the sampling of an analog signal, each sample is quantized by *L* levels for transmission (**source coding**)
- The information bits are encoded by an *M*-ary PCM (pulse-code modulation) system (**signaling**)
 - -n: the number of **code elements** in each codeword

Prof. Tsai

Example: *M*-ary PCM (Cont.)

M-ary

0

 $k\sigma$

 $k\sigma$

 $k\sigma$

• The average transmission power of *M*-ary PCM is

$$P = \frac{2}{M} \left[\left(\frac{1}{2} \right)^2 + \left(\frac{3}{2} \right)^2 + \dots + \left(\frac{M-1}{2} \right)^2 \right] (k\sigma)^2 = k^2 \sigma^2 \left(\frac{M^2 - 1}{12} \right)$$

-k is a constant for successfully decoding

• For example, k = 4 can prevent any symbol error

 $-\sigma^2 = N_0 B$: the noise variance measured in a bandwidth B

- Suppose that the bandwidth of the message signal is W and the number of quantization levels is L
 - Sample rate: 2W; PCM symbol rate: 2nW (n symbols/sample)
- The **maximum rate** of information transmission over the PCM system is

 $R_{\rm b} = 2W \log_2 L$ bits per second

Example: *M*-ary PCM (Cont.)

For a unique encoding process, we have $L = M^n$

no. levels = no. codewords

The rate of information transmission is $R_{\rm b} = 2nW \log_2 M$ bits per second

n symbols/sample \Rightarrow symbol rate 2nW

Solving the number of discrete amplitude levels under the average transmission power P (power constraint), we have

$$P = k^2 \sigma^2 \left(\frac{M^2 - 1}{12} \right) \Rightarrow M = \left(1 + \frac{12P}{k^2 N_0 B} \right)^{1/2}$$
 Allowable *M* for error-free transmission with *k*

- $R_{\rm b} = nW \log_2 \left(1 + \frac{12P}{k^2 N_{\rm o} B} \right)$ bits per second Therefore,
 - **PCM symbol** rate: 2nW
- The required channel bandwidth is $B = \kappa nW$
 - A **baseband** rectangular pulse of duration $1/(2n\overline{W})$
 - $-\kappa$ is a constant between 1 and 2 \Rightarrow the minimum value is 1

Prof. Tsai 101

Example: *M*-ary PCM (Cont.)

Therefore, the minimum required channel bandwidth is B = nW (for baseband Tx.) 10

Half mainlobe

Hence,

 $R_{\rm b} = B \log_2 \left(1 + \frac{12P}{k^2 N_0 B} \right) \text{bps} \frac{\partial^2 |\Phi|}{\partial D}$

- If the average transmission power in the PCM system is **increased** by $k^2/12$,
 - The **maximum rate** of information transmission is identical to the capacity of the ideal system

Example: *M*-ary PSK

- Consider a coherent *M*-ary PSK system
 - Using the null-to-null bandwidth, the bandwidth efficiency is

Null-

• The operating points by correspond to an average probability of symbol error $P_{\rm e} = 10^{-5}$

$$-M=2, 4, 8, 16, 32, 64$$

Prof. Tsai

Example: *M*-ary FSK

- Consider a coherent *M*-ary FSK system
 - With the separation
 between adjacent
 frequencies 1/2T, the
 bandwidth efficiency is

$$\frac{R_{\rm b}}{B} = \frac{2\log_2 M}{M}$$

• The operating points correspond to an average probability of symbol error $P_{\rm e}=10^{-5}$

$$-M=2, 4, 8, 16, 32, 64$$

Capacity of Binary-Input AWGN Channel

- Consider the capacity of an AWGN channel using encoded (channel coding) binary antipodal signaling (i.e., '0': -1; '1': +1)
 - To determine the **minimum achievable bit error rate** as a function of $E_{\rm b}/N_0$ for varying code rate r
- Let the random variables X and Y denote the **channel input** and **channel output** respectively (soft information is available)
 - X is a **discrete** variable, whereas Y is a **continuous** variable
 - Y is **continuous**: Soft information is available
- The **mutual information** between X and Y

$$I(X;Y) = h(Y) - h(Y|X)$$

- For Gaussian distributed noise with a variance σ^2

$$h(Y|X) = h(N) = \frac{1}{2}\log_2(2\pi e\sigma^2)$$
 $Y = X + N$

Prof. Tsai 105

Capacity of Binary-Input AWGN Channel (Cont.)

The **probability density function** of Y is a mixture of two Gaussian distributions (given X = x) with common variance

$$f_{Y}(y) = \frac{1}{2} \left\{ \frac{\exp\left[-(y+1)^{2}/2\sigma^{2}\right]}{\sqrt{2\pi}\sigma} + \frac{\exp\left[-(y-1)^{2}/2\sigma^{2}\right]}{\sqrt{2\pi}\sigma} \right\} \begin{array}{c} \textbf{Equiprobable} \\ \textbf{for MI} \\ \textbf{maximization} \end{array}$$

Then, the differential entropy of Y is

ferential entropy of Y is
$$h(y) = -\int_{-\infty}^{\infty} f_Y(y) \log_2[f_Y(y)] dy$$
I form is available

Capacity of the binary-input ch

No closed form is available

binary-input ch.

- The mutual information is solely a function of the **noise variance** $\sigma^2 \Rightarrow I(X;Y) = M(\sigma^2)$ for a function M
- For error-free transmission over the AWGN channel, the code rate r must be smaller than the channel capacity C (i.e., I(X;Y))

$$r < M(\sigma^2)$$

Capacity of Binary-Input AWGN Channel (Cont.)

A robust measure of the ratio
$$E_{\rm b}/N_0$$
 is $R_{\rm b}=rR_{\rm s} \Rightarrow T_{\rm b}=T_{\rm s}/r$
$$\frac{E_{\rm b}}{N_0}=\frac{PT_{\rm b}}{N_0}=\frac{PT_{\rm s}/r}{N_0}=\frac{P}{N_0r/T_{\rm s}}=\frac{P}{\left(N_0/T_{\rm s}\right)r}=\frac{P}{\sigma^2r} \begin{array}{c} P/\sigma^2: \\ \text{symbol SNR} \end{array}$$

- where P is the average transmitted power, $T_{\rm b}$ is the bit duration, $T_s = T_b r$ is the coded symbol duration, and $N_0/2$ is the two-sided power spectral density of the channel noise
- For the **maximum** code rate r,

$$r = M(\sigma^2) \Rightarrow \sigma^2 = M^{-1}(r)$$

- where $M^{-1}(r)$ is the **inverse** of the mutual information between the channel input and channel output
- By setting P = 1, the desired relation between E_b/N_0 and r is

$$X = -1$$
' or '+1' $\frac{E_b}{N_0} = \frac{P}{\sigma^2 r} = \frac{1}{rM^{-1}(r)}$

Prof. Tsai 107

Capacity of Binary-Input AWGN Channel (Cont.)

Using the Monte Carlo method to estimate the differential entropy h(Y) and therefore $M^{-1}(r) \Rightarrow E_b/N_0$ versus r

Capacity of Binary-Input AWGN Channel(Cont.)

- From previous results, we have the following conclusions:
 - For **uncoded** binary signaling (i.e., r = 1), an **infinite** E_b/N_0 is required for **error-free** communications
 - The **minimum** E_b/N_0 , **decreases** with decreasing code rate r
 - For example, for r = 1/2, the minimum value of E_b/N_0 is slightly less than 0.2 dB
 - As r approaches **zero** (equivalent to bandwidth $B \rightarrow \infty$), the **minimum** E_b/N_0 approaches the limiting value of **-1.6 dB** (**Shannon limit**)

Prof. Tsai

Information Capacity of Colored Noisy Channel

Colored Noisy Channel

- Previous discussion is under the assumption of a **band-limited** white noise channel.
- Consider the more general case of a **non-white** (non-constant PSD), or **colored**, **noisy channel**.
 - -H(f): transfer function (frequency response) of the channel
 - n(t): channel noise
 - A stationary Gaussian process of zero mean and power spectral density $S_N(f)$

Prof. Tsai

Colored Noisy Channel (Cont.)

- The goals of this study:
 - Find the **input ensemble**, described by the PSD $S_X(f)$ that
 - Maximizes the mutual information between the channel output y(t) and the channel input x(t)
 - Subject to the average power constraint P of x(t)
 - Determine the **optimum information capacity** of the channel

Colored Noisy Channel (Cont.)

- Because the channel is linear, the channel model can be replaced with an equivalent model
 - From the viewpoint of the spectral characteristics of the signal plus noise measured at the channel output
 - The power spectral density of the noise n'(t) is defined as

Prof. Tsai

Colored Noisy Channel (Cont.)

- To simplify the analysis, the **continuous** |H(f)| is approximated in the form of a **staircase**
 - The channel is divided into a large number of adjoining **frequency slots** \Rightarrow Slot width: Δf (one-sided)

• The original model is replaced by the **parallel combination** of

a finite number of H(f) subchannels, N

Each is corrupted
 by "band-limited
 white Gaussian
 noise"

Prof. Tsai

0

Capacity of Colored Noisy Channel

• The k-th subchannel in the approximation is described by

$$y_k(t) = x_k(t) + n_k(t), \quad k = 1, 2, \dots, N$$

• The average power of the signal component $x_k(t)$ is

Positive &
$$P_k = S_X(f_k) \times 2\Delta f$$
, $k = 1, 2, \dots, N$ Positive & Negative freq.

- where $S_X(f_k)$ is the PSD of the input signal evaluated at $f = f_k$
- The variance of the noise component $n_k(t)$ is

$$\sigma_k^2 = \frac{S_N(f_k)}{\left|H(f_k)\right|^2} \times 2\Delta f, \quad k = 1, 2, \dots, N$$
Channel gain is normalized

- where $S_N(f_k)$ and $|H(f_k)|$ are the noise spectral density and the channel's magnitude response evaluated at $f = f_k$
- The **information capacity** of the k-th subchannel is

$$C_k = \Delta f \log_2(1 + P_k / \sigma_k^2), \quad k = 1, 2, \dots, N$$

Prof. Tsai

Capacity of Colored Noisy Channel (Cont.)

- All the *N* subchannels are **independent** of one another.
- The total capacity of the **overall channel** is approximately given by the summation

$$C = \sum_{k=1}^{N} C_{k} = \sum_{k=1}^{N} \Delta f \log_{2} \left(1 + P_{k} / \sigma_{k}^{2} \right)$$

• We want to **maximize** the overall information capacity C subject to the **total power constraint**

$$P = \sum_{k=1}^{N} P_k$$

- The method of **Lagrange multipliers** is used to solve a constrained optimization problem (The solving is omitted)
- To satisfy this optimizing solution, we have the requirement:

$$P_k + \sigma_k^2 = K \times 2\Delta f, \quad k = 1, 2, \dots, N$$

- where K is a **constant** chosen to satisfy the power constraint

Capacity of Colored Noisy Channel (Cont.)

• Inserting the defining values of P_k and σ_k , we get

$$S_{X}(f_{k}) \times 2\Delta f + \frac{S_{N}(f_{k})}{\left|H(f_{k})\right|^{2}} \times 2\Delta f = 2K\Delta f \Rightarrow S_{X}(f_{k}) = K - \frac{S_{N}(f_{k})}{\left|H(f_{k})\right|^{2}}$$

Let \mathcal{F}_A denote the **frequency range** for which the constant Ksatisfies the condition (since $S_X(f_k) \ge 0$)

$$K \ge S_N(f_k)/|H(f_k)|^2$$
 to ensure that $S_X(f_k) \ge 0$

- As the incremental frequency interval approaches zero and the number of subchannels N goes to infinity
 - The PSD of the input ensemble that achieves the **optimum** information capacity is a nonnegative quantity defined by

$$S_X(f) = \begin{cases} K - S_N(f) / |H(f)|^2, & f \in \mathcal{F}_A \\ 0, & \text{otherwise} \end{cases}$$

Prof. Tsai 117

Capacity of Colored Noisy Channel (Cont.)

The average power of the channel input x(t) is

$$P = \int_{f \in \mathcal{F}_{d}} K - S_{N}(f) / |H(f)|^{2} df$$

- The constant K is set to the value satisfying the constraint
- For the optimum information capacity, we have $P_k + \sigma_k^2 = K \times 2\Delta f$

$$C = \sum_{k=1,k\in A}^{N} C_k = \sum_{k=1}^{N} \Delta f \log_2 \left(1 + P_k / \sigma_k^2\right)$$

$$= \sum_{k=1,k\in A}^{N} \Delta f \log_2 \left(K \left|H\left(f_k\right)\right|^2 / S_N\left(f_k\right)\right)$$

$$\sigma_k^2 = \frac{2\Delta f S_N\left(f_k\right)}{\left|H\left(f_k\right)\right|^2}$$

$$P_k + \sigma_k^2 = K \times 2\Delta f$$

$$P_k = S_X (f_k) \times 2\Delta f$$

$$\sigma_k^2 = \frac{2\Delta f S_N (f_k)}{|H(f_k)|^2}$$

118

- where A denotes the set of subchannel index with $P_k > 0$
- When the incremental frequency interval approaches zero, we have the limiting form $C = \int_{-\infty}^{\infty} \log_2(K|H(f)|^2/S_N(f)) df$

Water-filling Interpretation of the Information Capacity Law

Prof. Tsai

Water-filling Interpretation

 According to the PSD of the input ensemble that achieves the optimum information capacity and the average power of the channel input x(t)

$$S_{X}(f) = \begin{cases} K - S_{N}(f) / |H(f)|^{2}, & f \in \mathscr{F}_{A} \\ 0, & \text{otherwise} \end{cases}$$

$$P = \int_{f \in \mathscr{F}_{A}} K - S_{N}(f) / |H(f)|^{2} df$$

- We have the following observations:
 - The appropriate **input power spectral density** $S_X(f)$ is the bottom regions of the function $S_N(f)/|H(f)|^2$ that lie below the constant level K (which are shown shaded).
 - The **input power** *P* is defined by the **total area** of these shaded regions.

Water-filling Interpretation (Cont.)

- The shown spectral-domain picture is called the **water-filling** (pouring) interpretation, in the sense that
 - The process of **distributing** the **input power** across the function $S_N(f)/|H(f)|^2$ is identical to "The way in which water distributes itself in a vessel"

Prof. Tsai

Water-filling Interpretation (Cont.)

- Consider the idealized case of a band-limited signal in **AWGN** channel of power spectral density $S_N(f) = N_0/2$
 - The transfer function H(f): an **ideal band-pass filter**

$$H(f) = \begin{cases} 1, & 0 \le f_{c} - B/2 \le |f| \le f_{c} + B/2 \\ 0, & \text{otherwise} \end{cases}$$

- $-f_c$: the midband frequency; B: the channel bandwidth
- The average input signal power and the optimum information capacity become

$$P = 2B(K - N_0/2)$$

$$C = B \log_2(2K/N_0)$$

$$\Rightarrow K = P/2B + N_0/2$$

$$\Rightarrow C = B \log_2[(P/2B + N_0/2)/N_0] = B \log_2(1 + P/N_0B)$$

Homework

- You must give detailed derivations or explanations, otherwise you get no points.
- Communication Systems, Simon Haykin (4th Ed.)
- 9.2; 9.3;
- 9.5; 9.10;
- 9.12; 9.17;
- 9.22; 9.23;
- 9.29; 9.30;