通訊系統(II)

國立清華大學電機系暨通訊工程研究所 蔡育仁 台達館 821 室

Tel: 62210

E-mail: yrtsai@ee.nthu.edu.tw

Prof. Tsai

Chapter 6 Comparison of Digital Modulation Schemes Using a Single Carrier

Probability of Error

Prof. Tsai

Coherent and Noncoherent Detection

- The popular digital modulation schemes are classified into **two** categories, depending on the method of detection used at the receiver:
 - Class I, Coherent detection:
 - Binary PSK: two symbols, single frequency
 - Binary FSK: two symbols, two frequencies
 - QPSK: four symbols, single frequency—includes the QAM as a special case
 - MSK: four symbols, two frequencies
 - Class II, Noncoherent detection:
 - DPSK: two symbols, single frequency
 - Binary FSK: two symbols, two frequencies

Probability of Error

- For Class I, the BER formulas are expressed in terms of the erfc-function
- For Class II, the BER formulas are expressed in terms of an exponential function

Signaling Scheme	Bit Error Rate	
(a) Coherent BPSK Coherent QPSK Coherent MSK	$rac{1}{2} ext{erfc} \Big(\sqrt{E_b/N_0} \Big)$	
(b) Coherent BFSK	$rac{1}{2}\operatorname{erfc}\!\left(\sqrt{E_{b}/2N_{0}} ight)$	
(c) DPSK	$\frac{1}{2}\exp(-E_b/N_0)$	
(d) Noncoherent BFSK	$rac{1}{2} \exp \left(-E_b/2N_0 ight)$	

Prof. Tsai

Probability of Error (Cont.)

- The **coherent detection** schemes produce a smaller BER than those using **noncoherent detection**
- **BPSK** with coherent detection and **DPSK** with noncoherent detection, require an E_b/N_0 that is **3 dB less** than their **FSK** counterpart to realize the same BER
- At high E_b/N_0 , DPSK and BFSK using noncoherent detection perform almost as well, to within about 1 dB of their respective coherent detection counterparts

Bandwidth Efficiency (M-ary PSK)

- Considering the *M*-ary PSK schemes, the **power-bandwidth** requirements for the average probability of symbol error = 10^{-4}
 - **QPSK** (M = 4) offers the best trade-off between power and bandwidth requirements
 - For M > 8, power requirements become excessive
 - For M > 8, the **complexity** of signal generation and detection increases considerably

Value of M	$\frac{(\text{Bandwidth})_{M\text{-ary}}}{(\text{Bandwidth})_{\text{Binary}}}$		Probability of symbol error = 10 ⁻⁴	$\frac{\text{(Average power)}_{M\text{-ary}}}{\text{(Average power)}_{\text{Binary}}}$	
4	0.5	Bad		0.34 dB	†Good
8	0.333			3.91 dB	
16	0.25			8.52 dB	
32	0.2	Good		13.52 dB	Bad

Prof. Tsai

Bandwidth Efficiency (M-ary PSK & QAM)

- M-ary PSK and M-ary QAM have similar characteristics, but different signal constellations for M > 4
- For a **fixed peak power**, the distance between the message points of *M*-ary PSK is **smaller** than that of *M*-ary QAM
 - M-ary QAM **outperforms** M-ary PSK in error performance
 - M-ary QAM has **smaller** average signal power
 - M-ary QAM is affected by the **variation** in signal amplitude
 - Channel fading

Power Efficiency (M-ary PSK & FSK)

- For *M*-ary FSK, **increasing** *M* results in a **reduced** power requirement for a **fixed probability of error**
 - At the cost of increased channel bandwidth
 - Channel bandwidth of *M*-ary FSK: $B = R_b M / 2 \log_2 M$
- For *M*-ary PSK increasing *M* results in a increased power requirement for a fixed probability of error
 - But achieve better spectral efficiency

Prof. Tsai

Synchronization

Introduction

- The coherent reception of a digitally modulated signal requires that the receiver be **synchronous** with the transmitter.
- There are two basic modes of synchronization:
 - Carrier synchronization: When coherent detection is used, knowledge of both the frequency and phase of the carrier is necessary ⇒ carrier recovery or carrier synchronization
 - Timing synchronization: To perform demodulation, the receiver has to know the starting and finishing times of the individual symbols ⇒ clock recovery or symbol synchronization
- In general, both **frequency** and **timing synchronization** are necessary for **coherent** detection and **noncoherent** detection
- Phase synchronization is necessary only for coherent detection

Prof. Tsai

Synchronization Classification

- Synchronization schemes can be classified as:
 - Data-aided synchronization: A preamble is transmitted along with the data-bearing signal in a time-multiplexed manner on a periodic basis.
 Degrade bandwidth and power efficiency

Preamble Data Preamble Data

- Non-data-aided synchronization: No preamble is transmitted.
 - Establishing synchronization by **extracting** the necessary information from the **noisy distorted** modulated signal
 - Random data may impact the parameter estimation
 - Increase the time taken to establish synchronization

Data-aided Synchronization

- In data-aided synchronization, the preamble contains information about the **frequency**, **phase** and **symbol timing**
 - Commonly used in satellite and wireless communications to minimize the time required for synchronization
- Limitations of data-aided synchronization are
 - Reduced bandwidth efficiency: Assigning a certain portion of each transmitted frame to the preamble
 - Reduced power efficiency: the allocation of a certain fraction of power to the transmission of the preamble

Prof. Tsai

Signal Parameter Estimation

- Considering an AWGN channel that delays the transmitted signals and corrupts them by the addition of Gaussian noise
 - The received signal may be expressed as

$$r(t) = s(t-\tau) + n(t); \quad s(t) = \operatorname{Re}\left[\tilde{s}(t)e^{j2\pi f_c t}\right]$$

- where τ is the propagation delay
- The received signal may be expressed as z(t): noise related term

$$r(t) = \operatorname{Re}\left[\tilde{s}(t-\tau)e^{j2\pi f_c(t-\tau)} + z(t)e^{j2\pi f_c t}\right] = \operatorname{Re}\left\{\left[\tilde{s}(t-\tau)e^{j\phi} + z(t)\right]e^{j2\pi f_c t}\right\}$$

- where the carrier phase $\phi = -2\pi f_c \tau$
- If the carrier frequency is **fixed** and well-synchronized, it seems there is only one signal parameter τ to be estimated

14

To simultaneously achieve **phase** and **symbol** synchronization

Signal Parameter Estimation (Cont.)

- However, the carrier phase ϕ is **not** directly related to f_c and τ
 - The oscillator at the receiver is generally **not synchronous** in phase with that at the transmitter ⇒ additional phase error
 - The two oscillators at the transmitter and at the receiver may be **drifting** slowly with time τ Phase Symbol interv
- Therefore, both **phase** synchronization (targeting at ϕ) and **symbol** synchronization (targeting at τ) are required
- Usually, the **estimation error** in estimating τ must be a relatively small fraction of symbol duration T.
 - $-\pm 1\%$ of T is adequate for practical applications
 - Because $f_c >> 0$, the \pm 1% precision is generally inadequate for estimating the carrier phase, even if $\phi = -2\pi f_c \tau$
 - For a small **estimation error** $\Delta \tau$, $2\pi f_c \Delta \tau >> 2\pi$ for $f_c >> 0$

Prof. Tsai

Signal Parameter Estimation (Cont.)

- There are basically two criteria that are widely applied to signal parameter estimation:
 - **Maximum-likelihood** (ML) criterion: the signal parameter vector $\boldsymbol{\theta}$ is treated as deterministic but unknown
 - **Maximum a posteriori probability** (MAP) criterion: the signal parameter vector θ is modeled as random and characterized by an a priori probability density function $p(\theta)$
- If there is **no prior knowledge** of the parameter vector θ , we may assume that $p(\theta)$ is uniform (constant) over the range of values of the parameters.
 - In such a case, the MAP and ML estimates are identical

Block Diagram of a PSK Demodulator

- The carrier phase estimate ϕ is used in generating the reference signal $g(t) \cos(2\pi f_c t + \phi)$ for the **correlator**
- The symbol synchronizer controls the **sampler** and the output of the **signal pulse generator**.

Prof. Tsai

Decision-Directed Approaches

- For Non-data-aided synchronization, the received signal used for signal parameter estimation contains the uncertainty of the carried information (data)
 - The uncertainty may impact the estimation of parameters,
 e.g., the **phase** estimation of PSK modulated signal
 - The estimation of some parameters may not be influenced by the uncertainty, e.g., the estimation of symbol duration
- In this case, we can adopt one of two approaches
 - Short term: Assume that the data information is known
 - Quick response based on the decision results
 - Long term: Treat the data information as a random sequence and average over its statistics
 - Only suitable for a comparatively **static** parameter

Decision-Directed Approaches (Cont.)

- In decision-directed (or decision-feedback) parameter estimation, we assume that the carried information (data) over the observation interval has been estimated without demodulation errors
 - In this case, the carried information (data) is completely
 known
- For carrier phase estimation, we generally need to use decision-directed (short term) approaches
- For **symbol duration** estimation, we can generally treat the carried information as a **random sequence** and **average over** its statistics (**long term** approaches)
 - Symbol duration is **independent** to the carried information

Prof. Tsai

Decision-Directed Approaches (Cont.)

QAM receiver with decision-directed carrier phase estimation

Homework

- You must give detailed derivations or explanations, otherwise you get no points.
- Communication Systems, Simon Haykin (4th Ed.)
- 6.35;
- 6.36;