IS RO (II)

RzjgE FT 8 T 47
=y =
S gl %
Tel: 62210
E-mail: yrtsai@ee.nthu.edu.tw

Prof. Tsai

Chapter 5
Detection of Signals with Unknown
Phase (Non-coherent Detection)

Prof. Tsai




Introduction

Prof. Tsai

Noncoherent Detection

 In previous study, we assume that the receiver is perfectly
synchronized (in both frequency and phase) to the transmitter

— The only channel impairment is AWGN

 In practice, there is also uncertainty due to the randomness of
certain signal parameters; for example, a time-variant channel

— Including the channel distortion, propagation distance
uncertainty, multiple-path propagation, and user velocity

— Induce carrier phase uncertainty at the receiver
» The phase may change in a way that the receiver cannot follow
— The receiver cannot estimate the received carrier phase

— The carrier phase may change too rapidly for the receiver
to track
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Noncoherent Detection (Cont.)

* Phase synchronization may be too costly

— The designer may simply choose to disregard the phase
information in the received signal

— At the expense of some degradation in noise performance

» A digital communication receiver with no provision made for
carrier phase recovery is said to be noncoherent

— Noncoherent detection
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Optimum Quadratic Receiver
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Optimum Quadratic Receiver

* Consider a binary communication system, in which the
transmitted signal is defined by (BFSK)

s,(t)=+J2E/T cos(2r fit), 0<t<T,i=1,2
— E 1s the signal energy
— T'1s the duration of the signaling interval

— The carrier frequency f; for symbol 7 is an integer multiple of
1/2T (for continuous phase FSK)

» Assuming the receiver operates noncoherently with respect to
the transmitter, the received signal for an AWGN channel is

x(t) =2E/T cosQRr fit)+w(t), 0<t<T,i=1,2

— where the carrier phase is unknown at the receiver
 The local oscillator used at the receiver is cos(27z f;t + 0)
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Optimum Quadratic Receiver (Cont.)

* Assuming that there is no information about &
— Uniform distribution
/27, 0<t<2rx

0) =
Jo(®) { 0, otherwise

* The binary detection problem to be solved is
— Given the received signal x(¢) with an unknown phase 6

— Design an optimum receiver for detecting symbol s,
represented by the signal component /2E/T cos(27x fit)

 Define the conditional likelihood function of symbol s;, given
the carrier phase 6, as (Ch. 1: x-s, for equal symbol energy)

— T D d
L(Si(e)) = eXp[OT!fO x(t)cos(2x ft +0) dt} — eop:lg S

The coefficient makes no difference
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Optimum Quadratic Receiver (Cont.)

* Based on cos(x + y) = cos(x)cos(y)—sin(x)sin(y)
_[OT x(t)cos2r fit+0) dt = cos(H)J‘OT x(t)cosr ft)dt 1

—sin(d) J‘ OT x(¢)sin(2z ft) dt Q> )

¢ Define Similar to Cartesian coordinate = polar coordlnlate

- {[ J~OT x(t)cos(27 f1) dtT + [ J‘OT x(t)sin(27 fit) dtT}

B =tan”' ( jOT x(t)sin(27 f1) dt / jOT x(t) cos(27 1) dt)
[ x(t)ycos@ufrydi=Lcos(B): [ x(t)sin@zfir)de=1sin(p)

» Then, we have
.'OT x(t)cos(2x fit+0) dt =1, [cos (6)cos(B.)—sin(0)sin(f, )]

=Zl.cos!9+,6’i!
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Optimum Quadratic Receiver (Cont.)

* Averaging L(sl.(H)) over all possible values of &, we have
2z 1 2z
L(s;)= jo L(5,(8)) f,,(0) dO = = jo exp| al, cos(0+B) | do

» Based on the modified Bessel function of the first kind of zero
order

I,(x)= Iozﬂ exp(xcosy) dgy/27r
* We finally have

L(s,)= ijozﬁexp[ali cos(t9+,8i)] do

L [ el at cos(o)]a0=1, (]
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Optimum Quadratic Receiver (Cont.)

* For binary transmission, there are two hypotheses:
— Hypothesis H,, that signal s,(¢) was sent
— Hypothesis H,, that signal s,(#) was sent

» The binary-hypothesis test may be formulated as follow:
H

1
> Based on
,(al) 5 11(ah)  Jikelihood function
2
* Because the modified Bessel function /,(-) is a monotonically

increasing function, we may simplify the hypothesis test as
H

2 > 12
I 20
. ° o . H2 . .
» This decision rule is known as the quadratic receiver
— The rule is independent of the value of E or N,
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Implementation of the Quadratic Receiver

 According to the definition of /, the implementation of the

quadratic receiver is shown as follows: Equivalent

"2 to energy

= {[ [ x(0)cos@zfr) dtT ¥ [ [ x@sin@z £ dt]z} detection

1st . Only for the
T Y .
9?—) [" @ > squrer [ |detection of s(7)
0 ¥
Y+
() —=g COS 27f;1) <Z> : Src(l)Lé?é?— _)_Ou?::ut
At
T Yo %
f dt == Squarer
0
sin (27f;1)
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Equivalent Forms of the Quadratic Receiver

* One equivalent form of the quadrature receiver
— Replace each correlator with an equivalent matched filter
— In one branch, a filter matched to the signal cos(2 zff)
— In the other branch, a filter matched to sin(2 zff)
— Both of which are defined for the signaling interval 0 <¢< T

Sample
2nd Filter AtreT Only for the
matched to detection of s(¢
> cos (2mf1) %"O\t;—>- Squarer 1( )
I
O=t=T
— Square- Output
w0 Sample rooter > l;
Filter att=T
matched to
=1 sin (27fi1) 9‘0\0—> Squarer
Yo
O=t=T
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Equivalent Forms of the Quad. Receiver (Cont.)

* One equivalent form of the quadrature receiver
— Use noncoherent matched filter
* A filter that 1s matched to s(¢) = cos(2nft + 0) for 0 <t < T

— The envelope of the matched filter output is unaffected by
the value of phase & = Choose a matched filter with
impulse response cos[27f; (T — ¢)] corresponding to =0

» The output (at time 7) of the filter followed by an envelope
detector 1s the same as the quadrature receiver’s output /;

drd  Noncoherent matched filter Only for the
| Filter : sample | detection of s/7)
matched to
Envel ., Output
=M cos @nfi) | detector  [° e
| O=t=T |
= ———— ]
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Noncoherent Orthogonal Modulation
Techniques

Prof. Tsai

Noncoherent Orthogonal Modulation

» With the noncoherent receiver structures, we may now proceed
to study the noise performance of noncoherent orthogonal
modulation

— Noncoherent binary FSK

— Differential PSK (called DPSK)
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Noncoherent Orthogonal Modulation (Cont.)

* Consider a binary signaling scheme that involves the use of two
orthogonal signals s,(¢) and s,(?)

— Having the same energy E for the signaling interval 0 <t < T

» Let g,(¥) and g,(¢) denote the phase-shifted versions of s,(¢)
and s,(¢) that result from this transmission, respectively.

 [Itis assumed that the signals g,(¢) and g,(?) remain orthogonal
and have the same energy E

 In addition to carrier-phase uncertainty, the channel also
introduces AWGN w(¢) of zero mean and PSD N,/2

— The received signal is

x —_— 1
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Noncoherent Orthogonal Modulation (Cont.)

» At the receiver, the quadrature receiver is used for detection

— If the output amplitude /, greater (smaller) than the output
amplitude /,, the receiver decides in favor of s,(¢) (s,(?))

— When they are equal, a random decision is made
‘ _ Detection of s,(?)

T i
f it —{ Squarer
yr
+
Square-
rooter [~
T
14
T Yo }.é 1
it |—> Squarer

/ If 1 > 15, "
; choose s5,(1).
Comparison

x0) 0 device

If I, <15,
choose s,(r).

T Vi h
t = Squarer 5

Iz

Square-
rooter

[ el
at

"4 =1 s = Petection of S,(?)
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Noncoherent Orthogonal Modulation (Cont.

)

* In the detection of s5(7)
— The upper (in-phase) path: x(¢) is correlated with wy(?)

* A scaled version of 5,(7) with zero carrier phase
— The lower (quadrature) path: x(¢) is correlated with 7, (¢)

* The version that shifts the carrier phase by —90°

J« Only for the
In-phase channel detection Of Sl-(t)
2

lll,'(f)
\ W
() —=9 <2>—I>

| Square-law
device

2
X,

Square

rooter —>;
Mutual orthogonal -
/ 2 Equivalent
X0, x0;
fo " a Sauare-law |70 to energy
detection
Quadrature channel

;)

]

Orthogonal
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Noncoherent Orthogonal Modulation (Cont.)

 The signal 7 (¢) is the Hilbert transform of y/(7)
e Let w,(t) =m(t)cos (27 ft )

— where m(¢) 1s a band-limited message signal
» Then the Hilbert transform is defined by

v, (t) = m(t)sin (27 ft)

cos(27z fit —/2) =sin (27 ft)

* An important property of Hilbert transformation is that a signal

and its Hilbert transform are orthogonal to each other.
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Probability of Error for Noncoherent Receiver

» Based on the quadrature receiver, noise at the output of each
matched filter has two degrees of freedom:

— In-phase and quadrature

* @iven the phase 6, there are four noisy parameters that are
conditionally independent, and also identically distributed.

— (x;;, Xpy) In the upper path, and (x,,, x,,) in the lower path
11> 201 12> Q2

» The receiver has a symmetric structure: the error probability of
transmitting s,(7) 1s the same as that of transmitting s,(7)

* Suppose that signal s,(?) is transmitted for the interval 0 <7< T
— If the channel noise w(#) makes that [, > [,
= The receiver decides in favor of s,(¢) rather than s,(¢)

—> An error occurs
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Prob. of Error for Noncoherent Receiver (Cont.)

 For the probability density function of the random variable L,
(represented by sample value /,), we have

L=\x}+x0 = L, =X}, + X2,
— The output of this matched filter is due to noise alone

— The random variables X}, and X, are both Gaussian
distributed with zero mean and variance Ny/2

_ 1 x122
Jx, (x15) = 7Z—NO exp [ Foj 3 %0,

(noise)

i (i) = g =22
Xgo V02 \/7]\[0 No

X;E
(noise)
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Prob. of Error for Noncoherent Receiver (Cont.)

* The envelope of a Gaussian process represented in polar form
is Rayleigh distributed and independent of the phase &

— Therefore, the random variable L, has the following
probability density function:

(1)

f, )=2—lzexp(—£] [,>0

L, \"2 No No > b

* The conditional probability of error,
given /,, 1s the conditional

probability that [, > [,
0 [12 Conditional
P(Zz >, ‘11) - L f1,(5) dl, = exp _Vo probapilty
0 0 I
Prof. Tsai 23

Prob. of Error for Noncoherent Receiver (Cont.)

* For the random variable L, we have
L =xp +xp = L= X] + X,
— The output of this matched filter is due to signal plus noise
— The signal energy may distribute within X}, and X,

* Both the random variables X, and X, are Gaussian distributed
with mean \/E, and mean [E  , respectively, and variance N,/2

— where £ = E; + E; is the symbol energy X1
* X and X, are independent |

1 A
f)(“(-x”)zwexpl:—(x“—E)z/NO:| \/E
0
1 2
fXQl (xQI) = WCXP[_(XQ - \/E) /N0:| Slgnal plus e
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Prob. of Error for Noncoherent Receiver (Cont.)

» The standard approach is to find the probability density
function of L, due to signal plus noise

— However, this leads to rather complicated calculations
involving the use of Bessel functions

* Given x;; and x,, the conditional probability of error is

/? X2+ X
P(lz >, ‘xna le) = eXp(_N;j = exp| ———=
0

N,

* Since X} and X, are statistically independent, their joint pdf
equals the product of their individual pdf

* Then, the average probability of error is represented as

F, = _[: _[jop(lz > 1, ‘xll’ le)fX” (xll)fXQ] (xg1) dx;y dxy,

Prof. Tsai

Prob. of Error for Noncoherent Receiver (Cont.)

* The integrand of the average probability of error is

P(lz >, ‘xm le)fX“,XQ1 (xmxgl)

1
=——eX
TN, P

7N,

1
=——eX
TN, P

Xp, + X, +(x,1 —\/Ei)2 +(xQ1 —\/EZ)

2

NO

2, ~VE, [2) +E, /24 2(xp ~[E, [2) +E, )2

N,

) 2(x, ~E, /2)2 +2(xp — By /2)2 +E/2

N,
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Prob. of Error for Noncoherent Receiver (Cont.)

* Hence, the average probability of error is

1 E 1 oo 2
e e e A VR CTO A

1 o0 2
xm.mexp —FO(xQI—\/E/z)z}deI
1 I(:exp{—Ni(x“ —\/Eil/z)z} dx, =1

\

= Gaussian pdf
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Non-CP noncoherent Binary
Frequency-Shift Keying

Prof. Tsai




Noncoherent Binary Frequency-Shift Keying

* In binary FSK, the transmitted signal is

. <
5 () = J2E, /T, cos(2z fit), 0<t<T, =12
0, elsewhere

— To maintain orthogonality, the transmitted frequency is
set at f; = (n.+ i)/T, for some fixed integer n,

Sample at

; Filter imet=T,
NOH'CP matched to Envelope t "
—> cos 2mA) [ detector [°
e For the noncoherent 0 7 ‘11

detection o
. . choose 1.
— If [, > /,: in favor of .4 Comparison
If 1 <1y,
Symb()l 1 _>—Choose 0.
— If [/, <l,: in favor of Fiter |tz
symbol 0 = oo [ deteetr [
ample at
0 ¢ T time t =T,
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Probability of Error for Noncoherent BFSK

* The noncoherent binary FSK is a special case of noncoherent
orthogonal modulation with 7= 7, and £ = E,,

* Hence, the BER for noncoherent binary FSK is
1 E

P, =—exp| ——
2 2N,

It is not necessary that the FSK signal is a continuous-phase
signal

— Noncoherent detection doesn’t require phase synchronization
— Using different phases for symbol 1 and symbol 0 is possible

BFSK using coherent detection
1
P = Eerfc(«/Eb/ZNo )
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Differential Phase-Shift Keying

Prof. Tsai

Differential Phase-Shift Keying (DPSK)

« DPSK is the “noncoherent” version of binary PSK.

— DPSK eliminates the need for synchronizing the receiver to
the transmitter

— By combining two basic operations at the transmitter:
 Differential encoding of the input binary sequence
» Applying PSK of the encoded sequence
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Differential Encoding of DPSK

» Differential encoding starts with an arbitrary first bit,
serving as the reference bit

— Symbol 1 is used as the reference bit
» Generation of the differentially encoded sequence:

— Input bit is “1”’: leave the differentially encoded symbol
unchanged with respect to the current bit

— Input bit 1s “0”: change the differentially encoded symbol
with respect to the current bit (0 - 1 or 1 — 0)

« The differentially encoded sequence {d,} is used to shift the
sinusoidal carrier phase by zero and 180° Relative Phase

— Symbol 1: the phase of the signal remains unchanged
— Symbol 0: the phase of the signal is shifted by 180°
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Generation of DPSK
 Consider that the input binary sequence {b,} is “10010011”

» The reference bit used for differentially encoding is “1”
« Let {d,} denote the differentially encoded sequence and {d, ,}

denote its delayed version by one bit b, ®d,_, d,

* The complement of the modulo-2 sumof |0®0=0= 1;

{b,} and {d, |} defines the desired {d,} 191=0=>1;

« The binary symbols 1 and 0 are represented |1 ©0=1= 0;

by the transmitted phase 0 and = 0061=1= 0;
Input binary sequence {b,} 110(O0|1]0]0]T1(|1
Delayed version {d, } 1|1jo[1[1]0|1]1
Differentially encoded sequence{d,} | 17| 1 |O |1 1|0 | 1|11
Transmitted phase O|~7{0|0|x2|0]0]|O0
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Probability of Error for DPSK

DPSK is also noncoherent orthogonal modulation

— It’s orthogonal only when its behavior is considered over
successive two-bit intervals; that 1s, 0 <7 <27,

Let the transmitted DPSK signal in the first-bit interval be

J2E, /T, cos(2z f.t+6), corresponds to symbol 1 for 0<¢ <7,
If the input symbol for the second-bit interval is also symbol 1

” J2E, /T, cos(2n ft+6), for0<t<T,
s, (1) =
1 J2E, /T, cosQr f.t+6), for T, <t<2T,
If the input symbol for the second-bit interval is also symbol 0
” J2E, /T, cos(2x f,1+6), for 0<¢<T,
s,(1) =
’ J2E, T, cosQrft+0+x), for T, <t<2T,
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unchanged

changed

Probability of Error for DPSK (Cont.)

» The DPSK signals s,(¢) and s,(¢) are indeed orthogonal over
the two-bit interval 0 <¢ <27,
— A special form of noncoherent orthogonal modulation
— Previous bitinterval (0<¢<T,)and # 1 2 3 4 5
current bit interval (7, < ¢ < 2T)) .
— In comparison with the binary FSK, *° ;(;()t)orz . .
the difference 1s =27, and E=2F, —++ + |
» Hence, the BER for DPSK is given by L 0 T, 20, 3T, 4L,
1 E 1 E, 1
P = Eexp{—z—NJ = Eexp{—ﬁj BPSK: P, = Eerfc(1 |E, /N, )
— DPSK provides a gain of 3 dB over binary FSK using
noncoherent detection for the same E,/N,
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DPSK Transmitter

 The DPSK transmitter consists of two functional blocks:

— Logic network and one-bit delay (storage) element:
convert the raw input binary sequence {),} into the
differentially encoded sequence {d,}

— Binary PSK modulator: the output of which is the desired

DPSK signal.
1 1
épput Logic td) I Amplitude Product DPSK
inar > - -
sequeni:e network | level shifter ~1 modulator | signal
{b} X | _ |
| “1” > +1 T
{dk _1} I
| “0” > -1 + 2/T), cos (27f.1) |
Delay | X |
Ty [ | Binary PSK modulator
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DPSK Receiver

* To deal with the unknown phase 8, the receiver equips with an
in-phase path and a quadrature path

* Over the two-bit interval 0 < ¢ < 27,, we define the signal-space
as (4 coséb, A sind) and (-4 cosb, —A4 sinb), A: carrier amplitude

Ty

© , In-phase channel
cos (2mf,.t) Del =X, X, T X,nX

] ) o Y =X10X1n1 T Xo0X01

_90° Xy b saylify>0
1) —a phase CZ} Deuglc»n
shifter device —== Say Qify <0
+
Delay T
sin (2 f1) T Threshold =0
TJ

() [ « > Quadrature channel
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DPSK Receiver (Cont.)

* The receiver measures the coordinates (x, X,) at time ¢ = T,
and then measures (x,, X,,) at time ¢ =27},

- Xo =[xy, xQO]T and x, =[x/, le]T

» The issue to be resolved is whether these two points map to the

same signal point or different ones Random
o« If XX, = x;0%, + XgoXg > 0 Random Asing g____p_hase !
: . phase 2 /'|
— The two points are roughly in |
the same direction = Symbol 1 ™ , / |
~
o If X, X, = x,,%, + XX <0 A cos0 X\ | X,
— The two points are roughly in | /1< \A cos?
different direction = Symbol 0 | / ~
./ e
3/— ————— -Asin@
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DPSK Receiver (Cont.)

» Because the following identity:

Ty —
Xo X = X0X1 +X,0X

00

- [(xn +x,0)2 —(x, —xzo)2 +(x91 T X0 )2 _<le _XQO)Z}/LL

» The decision-making process is based on the binary-hypothesis
test rule: the distances between (x;;, x,) and (x5, X o)/ (=19, —Xp)

Distance to (—x,9, —xy) Distance to (x;, Xp0) _,,,

2 2 2 2
[((x[1 +x;0) +(xQ1 +xQ0) )—((x“ — ;) +(xQ1 —xQO) )} 20
n 0 n
— To test whether the point (x,, x,,) 18 closer to (xy, x) or its

image (—x;y, —x) (i.€., same or different direction) Vi, rule

01

— Closer to (x, xp): the phase unchanged = Symbol 1
— Closer to (—=x;g, —xg): the phase shifted by 180° = Symbol 0
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Homework

* You must give detailed derivations or explanations,
otherwise you get no points.

« Communication Systems, Simon Haykin (4t Ed.)
* 6.26;
* 6.33;
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