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Introduction
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Noncoherent Detection
• In previous study, we assume that the receiver is perfectly 

synchronized (in both frequency and phase) to the transmitter 

– The only channel impairment is AWGN

• In practice, there is also uncertainty due to the randomness of 
certain signal parameters; for example, a time-variant channel

– Including the channel distortion, propagation distance 
uncertainty, multiple-path propagation, and user velocity

– Induce carrier phase uncertainty at the receiver   

• The phase may change in a way that the receiver cannot follow

– The receiver cannot estimate the received carrier phase

– The carrier phase may change too rapidly for the receiver 
to track
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Noncoherent Detection (Cont.)
• Phase synchronization may be too costly 

– The designer may simply choose to disregard the phase 
information in the received signal 

– At the expense of some degradation in noise performance

• A digital communication receiver with no provision made for 
carrier phase recovery is said to be noncoherent

– Noncoherent detection 

Prof. Tsai

Optimum Quadratic Receiver



Prof. Tsai 7

Optimum Quadratic Receiver
• Consider a binary communication system, in which the 

transmitted signal is defined by (BFSK)

– E is the signal energy

– T is the duration of the signaling interval

– The carrier frequency fi for symbol i is an integer multiple of 
1/2T (for continuous phase FSK)

• Assuming the receiver operates noncoherently with respect to 
the transmitter, the received signal for an AWGN channel is

– where the carrier phase is unknown at the receiver

• The local oscillator used at the receiver is 

( ) 2 cos(2 ) ( ), 0 , 1, 2ix t E T f t w t t T i    

( ) 2 cos(2 ), 0 , 1, 2i is t E T f t t T i   

cos(2 )if t 
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Optimum Quadratic Receiver (Cont.)
• Assuming that there is no information about 

– Uniform distribution 

• The binary detection problem to be solved is 

– Given the received signal x(t) with an unknown phase 
– Design an optimum receiver for detecting symbol si

represented by the signal component  

• Define the conditional likelihood function of symbol si, given 
the carrier phase , as (Ch. 1: xsk for equal symbol energy)

1 2 , 0 2
( )

0, otherwise

t
f

 


 
 


 
0

( ) exp ( )cos(2 )
T

i iL s x t f t dt       

2 cos(2 )iE T f t

Depends
on 

The coefficient makes no difference
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Optimum Quadratic Receiver (Cont.)
• Based on 

• Define 

• Then, we have
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Similar to Cartesian coordinate  polar coordinate

I

Q
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Optimum Quadratic Receiver (Cont.)
• Averaging over all possible values of  , we have 

• Based on the modified Bessel function of the first kind of zero 
order

• We finally have

     
2 2

0 0

1
( ) ( ) exp cos

2i i i iL s L s f d l d
 

      
      

2

0 0
( ) exp( cos ) 2I x x d


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   

2

0

2

00

1
exp cos

2
1

exp cos
2

i i i

i i

L s l d

l d I l




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   







Prof. Tsai 11

Optimum Quadratic Receiver (Cont.)
• For binary transmission, there are two hypotheses: 

– Hypothesis H1, that signal s1(t) was sent 

– Hypothesis H2, that signal s2(t) was sent

• The binary-hypothesis test may be formulated as follow:

• Because the modified Bessel function I0() is a monotonically 
increasing function, we may simplify the hypothesis test as 

• This decision rule is known as the quadratic receiver

– The rule is independent of the value of E or N0

   
1

0 1 0 2

2

H
I l I l

H
 



1

2

2 2
1 2

H

H
l l



Based on
likelihood function
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Implementation of the Quadratic Receiver
• According to the definition of li, the implementation of the 

quadratic receiver is shown as follows: 
1 22 2

0 0
( ) cos(2 ) ( )sin(2 )

T T

i i il x t f t dt x t f t dt              
 

Only for the
detection of si(t)

1st

Equivalent 
to energy
detection
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Equivalent Forms of the Quadratic Receiver
• One equivalent form of the quadrature receiver  

– Replace each correlator with an equivalent matched filter

– In one branch, a filter matched to the signal cos(2fit)
– In the other branch, a filter matched to sin(2fit)
– Both of which are defined for the signaling interval 0  t  T 

Only for the
detection of si(t)

2nd
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Equivalent Forms of the Quad. Receiver (Cont.)
• One equivalent form of the quadrature receiver  

– Use noncoherent matched filter

• A filter that is matched to s(t) = cos(2fit + ) for 0  t  T

– The envelope of the matched filter output is unaffected by 
the value of phase   Choose a matched filter with 
impulse response cos[2fi (T – t)] corresponding to  = 0

• The output (at time T) of the filter followed by an envelope 
detector is the same as the quadrature receiver’s output li 

Noncoherent matched filter Only for the
detection of si(t)

3rd
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Noncoherent Orthogonal Modulation
• With the noncoherent receiver structures, we may now proceed 

to study the noise performance of noncoherent orthogonal 
modulation 

– Noncoherent binary FSK

– Differential PSK (called DPSK) 
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Noncoherent Orthogonal Modulation (Cont.)
• Consider a binary signaling scheme that involves the use of two 

orthogonal signals s1(t) and s2(t)  

– Having the same energy E for the signaling interval 0  t  T

• Let g1(t) and g2(t) denote the phase-shifted versions of s1(t) 
and s2(t) that result from this transmission, respectively. 

• It is assumed that the signals g1(t) and g2(t) remain orthogonal 
and have the same energy E

• In addition to carrier-phase uncertainty, the channel also 
introduces AWGN w(t) of zero mean and PSD N0/2  

– The received signal is

1 1

2 2

( ) ( ), ( ) sent for 0
( )

( ) ( ), ( ) sent for 0

g t w t s t t T
x t

g t w t s t t T

  
    
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Detection of s1(t)

Detection of s2(t)
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Noncoherent Orthogonal Modulation (Cont.)
• At the receiver, the quadrature receiver is used for detection

– If the output amplitude l1 greater (smaller) than the output 
amplitude l2, the receiver decides in favor of s1(t) (s2(t))  

– When they are equal, a random decision is made
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Noncoherent Orthogonal Modulation (Cont.)
• In the detection of si(t) 

– The upper (in-phase) path: x(t) is correlated with i(t)  

• A scaled version of si(t) with zero carrier phase

– The lower (quadrature) path: x(t) is correlated with 

• The version that shifts the carrier phase by –90

Only for the
detection of si(t)

Mutual orthogonal

ˆ ( )i t

Orthogonal

Equivalent 
to energy
detection
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Noncoherent Orthogonal Modulation (Cont.)
• The signal           is the Hilbert transform of i(t) 

• Let 

– where m(t) is a band-limited message signal 

• Then the Hilbert transform is defined by 

• An important property of Hilbert transformation is that a signal 
and its Hilbert transform are orthogonal to each other. 

ˆ ( )i t
 ( ) ( ) cos 2i it m t f t 

 ˆ ( ) ( )sin 2i it m t f t 

   cos 2 2 sin 2i if t f t   
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Probability of Error for Noncoherent Receiver
• Based on the quadrature receiver, noise at the output of each 

matched filter has two degrees of freedom: 

– In-phase and quadrature

• Given the phase , there are four noisy parameters that are 
conditionally independent, and also identically distributed.

– (xI1, xQ1) in the upper path, and (xI2, xQ2) in the lower path 

• The receiver has a symmetric structure: the error probability of 
transmitting s1(t) is the same as that of transmitting s2(t) 

• Suppose that signal s1(t) is transmitted for the interval 0  t  T

– If the channel noise w(t) makes that l2 > l1

 The receiver decides in favor of s2(t) rather than s1(t)

An error occurs 
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Prob. of Error for Noncoherent Receiver (Cont.)
• For the probability density function of the random variable L2

(represented by sample value l2), we have  

– The output of this matched filter is due to noise alone

– The random variables XI2 and XQ2 are both Gaussian 
distributed with zero mean and variance N0/2 

2 2 2 2
2 2 2 2 2 2I Q I Ql x x L X X    

2

2

2
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2
00

2
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X I
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X Q

x
f x
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x
f x
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



 
  

 
 

   
 
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Prob. of Error for Noncoherent Receiver (Cont.)
• The envelope of a Gaussian process represented in polar form 

is Rayleigh distributed and independent of the phase 
– Therefore, the random variable L2 has the following 

probability density function: 

• The conditional probability of error,                                               
given l1, is the conditional                                                     
probability that l2 > l1

2

2
2 2

2 2
0 0

2
( ) exp , 0L

l l
f l l

N N

 
   

 

 
2

1

2
1

2 1 1 2 2
0

( ) expLl

l
P l l l f l dl

N

  
    

 

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Prob. of Error for Noncoherent Receiver (Cont.)
• For the random variable L1, we have 

– The output of this matched filter is due to signal plus noise

– The signal energy may distribute within XI1 and XQ1

• Both the random variables XI1 and XQ1 are Gaussian distributed 
with mean         and mean         , respectively, and variance N0/2 

– where E = EI + EQ is the symbol energy 

• XI1 and XQ1 are independent 

2 2 2 2
1 1 1 1 1 1I Q I Ql x x L X X    

 

 
1

1

2

1 1 0

0

2

1 1 0

0

1
( ) exp

1
( ) exp

I

Q

X I I I

X Q Q Q

f x x E N
N

f x x E N
N





     

     

QE

Signal plus noise

l1

xI1 IE
QE

xQ1

IE
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Prob. of Error for Noncoherent Receiver (Cont.)
• The standard approach is to find the probability density 

function of L1 due to signal plus noise 

– However, this leads to rather complicated calculations
involving the use of Bessel functions

• Given xI1 and xQ1, the conditional probability of error is

• Since XI1 and XQ1 are statistically independent, their joint pdf 
equals the product of their individual pdf 

• Then, the average probability of error is represented as

 
2 22
1 11

2 1 1 1
0 0

, exp exp I Q
I Q

x xl
P l l x x

N N

  
           

 
1 12 1 1 1 1 1 1 1, ( ) ( )

I Qe I Q X I X Q I QP P l l x x f x f x dx dx
 

 
  
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Prob. of Error for Noncoherent Receiver (Cont.)
• The integrand of the average probability of error is

 
   

   

   

1 12 1 1 1 , 1 1

2 2
2 2
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1 1
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1
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2 2 2 2 2 21
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







        
  
        
  
       
  
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Prob. of Error for Noncoherent Receiver (Cont.)
• Hence, the average probability of error is 

 

 
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Noncoherent Binary Frequency-Shift Keying
• In binary FSK, the transmitted signal is 

– To maintain orthogonality, the transmitted frequency is 
set at  fi = (nc + i)/Tb for some fixed integer nc

• For the noncoherent                                                           
detection

– If l1 > l2: in favor of                                                             
symbol 1

– If l1 < l2: in favor of                                                        
symbol 0

2 cos(2 ), 0
( ) , 1, 2

0, elsewhere
b b i b

i

E T f t t T
s t i

   


Non-CP
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Probability of Error for Noncoherent BFSK
• The noncoherent binary FSK is a special case of noncoherent 

orthogonal modulation with T = Tb and E = Eb

• Hence, the BER for noncoherent binary FSK is

• It is not necessary that the FSK signal is a continuous-phase
signal 

– Noncoherent detection doesn’t require phase synchronization

– Using different phases for symbol 1 and symbol 0 is possible

0

1
exp

2 2
b

e

E
P

N

 
  

 

 0

1
erfc 2

2e bP E N

BFSK using coherent detection
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Differential Phase-Shift Keying
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Differential Phase-Shift Keying (DPSK)
• DPSK is the “noncoherent” version of binary PSK. 

– DPSK eliminates the need for synchronizing the receiver to 
the transmitter 

– By combining two basic operations at the transmitter: 

• Differential encoding of the input binary sequence

• Applying PSK of the encoded sequence
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Differential Encoding of DPSK
• Differential encoding starts with an arbitrary first bit, 

serving as the reference bit

– Symbol 1 is used as the reference bit 

• Generation of the differentially encoded sequence: 

– Input bit is “1”: leave the differentially encoded symbol 
unchanged with respect to the current bit  

– Input bit is “0”: change the differentially encoded symbol 
with respect to the current bit (0  1 or 1  0) 

• The differentially encoded sequence {dk} is used to shift the 
sinusoidal carrier phase by zero and 180
– Symbol 1: the phase of the signal remains unchanged

– Symbol 0: the phase of the signal is shifted by 180

Relative Phase
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Generation of DPSK
• Consider that the input binary sequence {bk} is “10010011”  

• The reference bit used for differentially encoding is “1” 

• Let {dk} denote the differentially encoded sequence and {dk–1} 
denote its delayed version by one bit

• The complement of the modulo-2 sum of                                 
{bk} and {dk–1} defines the desired {dk} 

• The binary symbols 1 and 0 are represented                                        
by the transmitted phase 0 and 

Input binary sequence {bk} 1 0 0 1 0 0 1 1
Delayed version {dk–1} 1 1 0 1 1 0 1 1

Differentially encoded sequence{dk} 1 1 0 1 1 0 1 1 1
Transmitted phase 0 0  0 0  0 0 0

bk  dk–1 dk
0  0 = 0  1;
1  1 = 0  1;
1  0 = 1  0;
0  1 = 1  0;



Prof. Tsai 35

Probability of Error for DPSK
• DPSK is also noncoherent orthogonal modulation 

– It’s orthogonal only when its behavior is considered over 
successive two-bit intervals; that is, 0  t  2Tb

• Let the transmitted DPSK signal in the first-bit interval be    

• If the input symbol for the second-bit interval is also symbol 1

• If the input symbol for the second-bit interval is also symbol 0

1

2 cos(2 + ), for 0
( )

2 cos(2 + ), for 2

b b c b

b b c b b

E T f t t T
s t

E T f t T t T

 

 

   
 

2 cos(2 ), corresponds to symbol 1 for 0b b c bE T f t t T   

2

2 cos(2 + ), for 0
( )

2 cos(2 + ), for 2

b b c b

b b c b b

E T f t t T
s t

E T f t T t T

 

  

   
  

unchanged

changed
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Probability of Error for DPSK (Cont.)
• The DPSK signals s1(t) and s2(t) are indeed orthogonal over 

the two-bit interval 0  t  2Tb

– A special form of noncoherent orthogonal modulation 

– Previous bit interval (0  t  Tb) and                                       
current bit interval (Tb  t  2Tb) 

– In comparison with the binary FSK,                                    
the difference is T = 2Tb and E = 2Eb

• Hence, the BER for DPSK is given by

– DPSK provides a gain of 3 dB over binary FSK using 
noncoherent detection for the same Eb/N0

0 0

1 1
exp exp

2 2 2
b

e

EE
P

N N

   
      

   

–Tb 0 Tb 2Tb 3Tb 4Tb

R 1       2       3       4       5

…s1(t) or
s2(t) 

 0

1
erfc

2e bP E NBPSK:
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DPSK Transmitter
• The DPSK transmitter consists of two functional blocks:

– Logic network and one-bit delay (storage) element: 
convert the raw input binary sequence {bk} into the 
differentially encoded sequence {dk}

– Binary PSK modulator: the output of which is the desired 
DPSK signal.

“1”  +1
“0”  –1

Binary PSK modulator
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DPSK Receiver
• To deal with the unknown phase , the receiver equips with an 

in-phase path and a quadrature path 

• Over the two-bit interval 0  t  2Tb, we define the signal-space 
as (A cos, A sin) and (–A cos, –A sin), A: carrier amplitude

In-phase channel

Quadrature channel

0 1 0 1I I Q Qy x x x x 
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DPSK Receiver (Cont.)
• The receiver measures the coordinates (xI0, xQ0) at time t = Tb

and then measures (xI1, xQ1) at time t = 2Tb

– x0 = [xI0, xQ0]T and x1 = [xI1, xQ1]T

• The issue to be resolved is whether these two points map to the 
same signal point or different ones

• If                                            

– The two points are roughly in                                                   
the same direction  Symbol 1

• If                                            

– The two points are roughly in                                                   
different direction  Symbol 0

T
0 1 0 1 0 1 0I I Q Qx x x x  x x

T
0 1 0 1 0 1 0I I Q Qx x x x  x x xI

xQ

 

Random
phase 1Random

phase 2
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DPSK Receiver (Cont.)
• Because the following identity:

• The decision-making process is based on the binary-hypothesis 
test rule: the distances between (xI1, xQ1) and (xI0, xQ0)/(–xI0, –xQ0)  

– To test whether the point (xI1, xQ1) is closer to (xI0, xQ0) or its 
image (–xI0, –xQ0) (i.e., same or different direction)

– Closer to (xI0, xQ0): the phase unchanged  Symbol 1

– Closer to (–xI0, –xQ0): the phase shifted by 180  Symbol 0

       

T
0 1 0 1 0 1

2 22 2

1 0 1 0 1 0 1 0 4

I I Q Q

I I I I Q Q Q Q

x x x x

x x x x x x x x

 

          

x x

         2 22 2

1 0 1 0 1 0 1 0

"1"

"0"

0I I Q Q I I Q Qx x x x x x x x 


         

Distance to (xI0, xQ0)Distance to (–xI0, –xQ0)

ML rule
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Homework
• You must give detailed derivations or explanations, 

otherwise you get no points. 

• Communication Systems, Simon Haykin (4th Ed.)

• 6.26; 

• 6.33;


