通訊系統(II)

國立清華大學電機系暨通訊工程研究所 蔡育仁 台達館821室

Tel: 62210

E-mail: yrtsai@ee.nthu.edu.tw

Prof. Tsai

Chapter 4 Frequency-Shift Keying Modulation

Introduction

Prof. Tsai

Orthogonal Signaling

• Orthogonal signals are defined as a set of equal energy signals $s_m(t)$, $1 \le m \le M$, such that

$$\langle s_m(t), s_n(t) \rangle = 0, \quad m \neq n, 1 \leq m, n \leq M$$

• The signals are **linearly independent** and hence the number of **orthonormal basis functions** is N = M

$$\phi_j(t) = s_j(t) / \sqrt{E}, 1 \le j \le N$$

- where E is the symbol energy

• The signal vectors can be represented as $\mathbf{s}_1 = \left[\sqrt{E}, 0, 0, \cdots, 0 \right]$ $\mathbf{s}_2 = \left[0, \sqrt{E}, 0, \cdots, 0 \right]$ \vdots $\mathbf{s}_M = \left[0, 0, 0, \cdots, \sqrt{E} \right]$

Orthogonal Signaling (Cont.)

• The distance between two signal vectors $s_m(t)$ and $s_n(t)$ is

$$d_{mn} = \sqrt{2E}$$
, $m \neq n, 1 \leq m, n \leq M$

- All signal points are equally spaced
- The distance is the **minimum distance** d_{\min}
- Because each symbol contains $\log_2 M$ bits

$$E_b = E/\log_2 M$$

Hence,

$$d_{\min} = \sqrt{2E_b \log_2 M}$$

Proportional to the number of bits in a symbol

- The increase in M improves the power efficiency
 - However, a high-dimension signal space is required for signal representation ⇒ Degrades the bandwidth efficiency
- For M-PSK: $d_{\min} = 2\sqrt{E_b \log_2 M} \sin(\pi/M)$

Prof. Tsai 5

Frequency-Shift Keying (FSK)

- Frequency-Shift Keying (FSK) is a special case of the construction of orthogonal signals
- Consider the construction of orthogonal signal waveforms that differ in frequency

$$s_{m}(t) = \operatorname{Re}\left[\tilde{s}_{m}(t)e^{j2\pi f_{c}t}\right] = \sqrt{\frac{2E}{T}}\cos\left(2\pi\left(f_{c} + m\Delta f\right)t\right), 0 \le t \le T$$

$$\tilde{s}_{m}(t) = \sqrt{\frac{2E}{T}}e^{j2\pi m\Delta ft}, 0 \le t \le T$$

• The messages are transmitted by a set of signals that only differ in **frequency**

Linear and Nonlinear Modulation

- In QAM signaling (ASK and PSK can be considered as special cases), the **lowpass equivalent** of the signal is of the form $A_m g(t)$ where A_m is a complex number
 - The sum of two lowpass equivalent signals is the general form of the lowpass equivalent of a QAM signal
 - The sum of two QAM signals is another QAM signal
 - Hence, ASK, PSK, and QAM are sometimes called linear modulation schemes
- On the other hand, **FSK** signaling does not satisfy this property
 - Therefore it belongs to the class of nonlinear modulation schemes

Prof. Tsai

Continuous-Phase Frequency-Shift Keying (CPFSK) Modulation

Continuous-Phase Binary FSK

Prof. Tsai

Continuous-Phase (CP) Binary FSK

• In binary FSK, symbols 1 and 0 are distinguished from each other by transmitting one of two sinusoidal waves that differ in frequency by a fixed amount

$$s_i(t) = \begin{cases} \sqrt{2E_b/T_b} \cos(2\pi f_i t), & 0 \le t < T_b \\ 0, & \text{elsewhere} \end{cases}, i = 1, 2$$

- where E_b is the signal energy per bit and $f_i = (n_c + i)/T_b$ is the transmitted frequency for some fixed integer n_c
- Symbol 1 is represented by $s_1(t)$ and symbol 0 by $s_2(t)$
- The FSK signal described here is a continuous-phase signal
 - The phase continuity is always maintained, including the inter-bit switching times
 - Specifically, if $f_i = (n_c + i)/T_b \Rightarrow$ zero-phase at t = 0 and $t = T_b$
 - It is **not** essential that all symbols have the same initial phase

Continuous-Phase Binary FSK (Cont.)

• Since $s_1(t)$ and $s_2(t)$ are orthogonal, we have the set of orthonormal basis functions described by

$$\phi_i(t) = \begin{cases} \sqrt{2/T_b} \cos(2\pi f_i t), & 0 \le t < T_b \\ 0, & \text{elsewhere} \end{cases}, i = 1, 2$$

• Correspondingly, the coefficient s_{ij} for i = 1, 2 and j = 1, 2 is defined by

$$s_{ij} = \int_0^{T_b} s_i(t) \phi_j(t) dt = \begin{cases} \sqrt{E_b}, & i = j \\ 0, & i \neq j \end{cases}, i, j = 1, 2$$

• The two message points are defined by the signal vectors

$$\mathbf{s}_1 = \begin{bmatrix} \sqrt{E_b} \\ 0 \end{bmatrix}; \quad \mathbf{s}_2 = \begin{bmatrix} 0 \\ \sqrt{E_b} \end{bmatrix}$$

Prof. Tsai

Continuous-Phase Binary FSK (Cont.)

• The Euclidean distance $\|\mathbf{s}_1 - \mathbf{s}_2\|$ is equal to $\sqrt{2E_b}$

Generation of CP Binary FSK Signals

- A binary FSK signal generator consists of three components:
 - On-off level encoder: the output of which is a constant amplitude of $\sqrt{E_h}$ for symbol 1 and zero for symbol 0

- **Pair of oscillators**: whose frequencies f_1 and f_2 differ by an integer multiple of

Prof. Tsai

Generation of CP BFSK Signals (Cont.)

- To meet the phase continuity requirement
 - The two oscillators are **synchronized** with each other
- Alternatively, we may use a voltage-controlled oscillator (VCO), in which case phase continuity is automatically satisfied
 - Only one oscillator
 - With the output frequency controlled by the input signal

Detection of CP Binary FSK Signals

- A **coherent** detector consists of two **correlators** with a common input: the noisy received signal x(t)
 - The local coherent reference signals: $\phi_1(t)$ and $\phi_2(t)$
- The correlator outputs are then **subtracted**, one from the other
- The resulting difference is then compared with a threshold: **zero**
 - If y > 0: symbol 1; if y < 0: symbol 0; if y = 0: random guess

Prof. Tsai

Error Probability of CP Binary FSK

- The observation vector \mathbf{x} has two elements x_1 and x_2 that are defined by $x_i = \int_0^{T_b} x(t) \phi_i(t) dt$, i = 1, 2
 - where x(t) is the received signal, whose form depends on which symbol was transmitted
- Given that symbol *i* was transmitted, $x(t) = s_i(t) + w(t)$
 - where w(t) is the sample function of a **white Gaussian noise process** of zero mean and power spectral density $N_0/2$

16

- If i = 1, $\mathbb{E}[x_1] = \sqrt{E_h}$ and $\mathbb{E}[x_2] = 0$
- If i = 2, $\mathbb{E}[x_1] = 0$ and $\mathbb{E}[x_2] = \sqrt{E_b}$
- We define a new Gaussian random variable Y with $y = x_1 x_2$

$$-\mathbb{E}[y \mid 1] = +\sqrt{E_b}$$
 and $\mathbb{E}[y \mid 0] = -\sqrt{E_b}$

 $- Var[Y] = Var[X_1] + Var[X_2] = N_0$

Error Probability of CP BFSK (Cont.)

• Suppose that symbol *i* was sent. The conditional probability density function of the random variable *Y* is given by

$$f_{Y}(y|1) = \frac{1}{\sqrt{2\pi N_{0}}} \exp\left[-\frac{1}{2N_{0}} \left(y - \sqrt{E_{b}}\right)^{2}\right]$$
$$f_{Y}(y|0) = \frac{1}{\sqrt{2\pi N_{0}}} \exp\left[-\frac{1}{2N_{0}} \left(y + \sqrt{E_{b}}\right)^{2}\right]$$

• The conditional probability of error given that symbol *i* was sent is $n = n - \frac{1}{erfc} \left(\sqrt{\frac{E}{2N}} \right)$

$$p_{10} = p_{01} = \frac{1}{2} \operatorname{erfc} \left(\sqrt{E_b / 2N_0} \right)$$

• Finally, the BER for binary FSK using coherent detection is

$$P_e = \frac{1}{2}\operatorname{erfc}\left(\sqrt{E_b/2N_0}\right)$$
 BPSK: $P_e = \frac{1}{2}\operatorname{erfc}\left(\sqrt{E_b/N_0}\right)$

Prof. Tsai

Power Spectra of Binary FSK Signals

- Consider the case that the two transmitted frequencies f_1 and f_2 differ by an amount equal to the bit rate $1/T_b$
 - The arithmetic mean of f_1 and f_2 : the carrier frequency f_c

$$-f_1 = f_c + 1/2T_b$$
 and $f_2 = f_c - 1/2T_b$
$$f_c = (f_1 + f_2)/2$$

• The signal can be express as a frequency-modulated (FM) signal **Frequency:** $f + 1/2T_t$

signal Frequency:
$$f_c \pm 1/2T_b$$

$$s(t) = \sqrt{2E_b/T_b} \cos(2\pi f_c t \pm \pi t/T_b), \quad 0 \le t < T_b$$

$$= \sqrt{2E_b/T_b} \left[\frac{\cos(\pi t/T_b)\cos(2\pi f_c t)}{\cos(2\pi f_c t)} \pm \frac{\sin(\pi t/T_b)\sin(2\pi f_c t)}{\cos(2\pi f_c t)} \right]$$
In-phase Ouadrature

- "-": symbol 1; "+": symbol 0

Independent to data

Power Spectra of Binary FSK Signals (Cont.)

$$s(t) = \sqrt{2E_b/T_b} \left[\cos(\pi t/T_b) \cos(2\pi f_c t) \mp \sin(\pi t/T_b) \sin(2\pi f_c t) \right]$$

- The **in-phase component**: completely independent of the input binary wave
 - The baseband PSD consists of **two delta functions** weighted by the factor $E_b/2T_b$ and occurring at $f = \pm 1/2T_b$
- The **quadrature component**: directly related to the input binary sequence
 - -g(t) for symbol 1 and +g(t) for symbol 0 $g(t) = \sqrt{2E_b/T_b} \sin(\pi t/T_b), \quad 0 \le t < T_b$
 - The baseband PSD of g(t) is

A smoother shape $S_g(f) = \frac{8E_b \cos^2(\pi T_b f)}{\pi^2 \left(4T_b^2 f^2 - 1\right)^2}$ A smoother shape $\Rightarrow \text{Quicker falling}$

Prof. Tsai

Power Spectra of Binary FSK Signals (Cont.)

• Because the in-phase and quadrature components are **independent** of each other, the overall **baseband PSD** is

$$S_{B}(f) = \frac{E_{b}}{2T_{b}} \left[\delta \left(f - \frac{1}{2T_{b}} \right) + \delta \left(f + \frac{1}{2T_{b}} \right) \right] + \frac{8E_{b}\cos^{2}(\pi T_{b}f)}{\pi^{2} \left(4T_{b}^{2}f^{2} - 1 \right)^{2}}$$

• The **passband** PSD becomes $f = R_b/2$

$$S_{P}(f) = \frac{1}{4} \left[S_{B}(f - f_{c}) + S_{B}(f + f_{c}) \right]$$

- The PSD contains two **discrete frequency components** located at f_1 and f_2 , with the sum power up to 1/2 the total signal power
 - The discrete frequency components provide a practical basis for synchronizing the receiver with the transmitter
 - The power is independent to data \Rightarrow low power efficiency

Power Spectra of Binary FSK Signals (Cont.)

The baseband power spectral density of a binary FSK signal with continuous phase

Ultimately falls off as the inverse fourth power of frequency

$$S_g(f) = \frac{8E_b \cos^2(\pi T_b f)}{\pi^2 (4T_b^2 f^2 - 1)^2}$$

$$S_B(f) = \frac{2E_b \sin^2(\pi T_b f)}{(\pi T_b f)^2}$$

$$= 2E_b \operatorname{sinc}^2(T_b f)$$

Prof. Tsai

Minimum Shift Keying

Signal Phase of CP FSK

- For *M*-PSK, the transmitted signal is defined as $s_i(t) = \sqrt{2E/T} \cos(2\pi f_c t + \theta_i), \quad 0 \le t < T; \quad \theta_i = 2(i-1)\pi/M$
- For CP BFSK, the transmitted signal is defined as

$$s_i(t) = \sqrt{2E_b/T_b} \cos(2\pi f_i t + \theta(0)), \quad 0 \le t < T_b$$

- where $\theta(0)$ denotes the value of the phase at time t = 0
- Can we describe and analyze the CP BFSK signal from the viewpoint of **signal phase**?

$$s_i(t) = \sqrt{2E_b/T_b} \cos(2\pi f_c t + \theta_i(t)), \quad 0 \le t < T_b$$

- where the $\theta_i(t)$ is a **time-varying** phase
- Unlike *M*-PSK, the of **signal phase** of the CP BFSK signal is not a constant during a symbol duration

Prof. Tsai

Signal Phase of CP FSK

- What is the **phasor trajectory** of a signal with a frequency **different** from the **carrier frequency**?
 - The phasor of the carrier signal is set as the **reference phase** (zero phase) Q
 - If the signal frequency $f_1 > f_c$
 - The phasor moves with a **positive** frequency $f_1 f_c$
 - If the signal frequency $f_2 < f_c$
 - The phasor moves with a **negative** frequency $f_2 f_c$

• The phase $\theta_i(t)$ of a CPFSK signal increases or decreases linearly with time during each bit duration of T_b

Continuous-Phase Frequency-Shift Keying

- In the detection of binary FSK signal, the **phase information** contained in the received signal is **not fully exploited**
- By using the **continuous-phase property** in detection, it is possible to improve the noise performance at the receiver
 - This improvement is achieved at the expense of increased system complexity
- Consider a continuous-phase frequency-shift keying (CPFSK) signal

$$s(t) = \begin{cases} \sqrt{2E_b/T_b} \cos(2\pi f_1 t + \theta(0)), & \text{symbol } 1\\ \sqrt{2E_b/T_b} \cos(2\pi f_2 t + \theta(0)), & \text{symbol } 0 \end{cases}$$

– where $\theta(0)$ denotes the value of the phase at time t = 0

Prof. Tsai 25

CPFSK (Cont.)

• Another way of representing the CPFSK signal s(t) is to express it as a conventional **angle-modulated signal**

$$s(t) = \sqrt{2E_b/T_b} \cos \left[2\pi f_c t + \theta(t) \right]$$

- where $\theta(t)$ is the phase of s(t) at time t
- The phase $\theta(t)$ of a CPFSK signal increases or decreases linearly with time during each bit duration of T_h
- That is, $\theta(t) = \theta(0) \pm (\pi h/T_b)t$, $0 \le t < T_b$
 - where "+": symbol 1; "-": symbol 0; and h: a dimensionless parameter referred to as the **deviation ratio**
- Because $2\pi f_c t + (\pi h/T_b)t = 2\pi f_1 t$; $2\pi f_c t (\pi h/T_b)t = 2\pi f_2 t$
 - We deduce the relation: $h = (f_1 f_2)T_b$
 - h is normalized with respect to $1/T_b$: if $f_1 f_2 = 1/T_b$, h = 1

CPFSK – Phase Trellis

- At time $t = T_b$, $\theta(T_b) \theta(0) = \begin{cases} \pi h & \text{for symbol 1} \\ -\pi h & \text{for symbol 0} \end{cases}$
- Sending symbol 1 (symbol 0) increases (decreases) the phase of a CPFSK signal s(t) by πh radians odd even
- **Phase tree**: A plot shows the transitions of phase across successive signaling intervals
- The phase of a CPFSK signal is an odd or even multiple of πh radians at odd or even multiples of T_b, respectively.

Prof. Tsai

CPFSK – Phase Trellis (Cont.)

- The phase tree shows **phase continuity** of the CPFSK signal
- The CP BFSK with $f_1 f_2 = 1/T_b$ is also a CPFSK signal
 - With h = 1
- Hence, for **CP BFSK**, the phase change **over one bit interval** is $\pm \pi$ radians
 - A change of $+\pi$ is **exactly the same** as a change of $-\pi$, modulo 2π
 - Therefore, there is **no memory** for this case
 - Knowing which particular change $(+\pi \text{ or } -\pi)$ occurred in the **previous signaling interval** provides **no help** in the **current signaling interval**

CPFSK – Phase Trellis (Cont.)

- In contrast, we have a completely different situation when the deviation ratio h is assigned the special value of h = 1/2
 - The phase takes on $\pm \pi/2$ at **odd** multiples of T_b , and
 - The phase takes on 0 and π at **even** multiples of T_b

Prof. Tsai

Minimum Shift-Keying (MSK)

- With h = 1/2, symbol 1 and symbol 0 **do not interfere** with each other in the process of detection
 - The two signal points are different
 - The frequency deviation: $f_1 f_2$ equals half the bit rate $(1/2T_b)$
- The frequency deviation h = 1/2 is the **minimum frequency spacing** that allows the two FSK signals representing symbol 1 and symbol 0 to be **coherently orthogonal** Q
- The CPFSK signal with h = 1/2 is commonly referred to as minimum shift-keying (MSK)

• We may expand the CPFSK signal s(t) in terms of its in-phase and quadrature components as

$$s(t) = \sqrt{2E_b/T_b} \cos\theta(t) \cos(2\pi f_c t) - \sqrt{2E_b/T_b} \sin\theta(t) \sin(2\pi f_c t)$$

- In-phase: $\cos \theta(t)$; Quadrature: $\sin \theta(t)$

$$\theta(t) = \begin{cases} \frac{\theta(2nT_b) \pm (\pi/2T_b)[t - 2nT_b]}{(2n-1)T_b}, & (2n-1)T_b \le t < (2n+1)T_b \\ \frac{\theta((2n+1)T_b) \pm (\pi/2T_b)[t - (2n+1)T_b]}{(2n-1)T_b}, & (2n-1)T_b \le t < (2n+2)T_b \end{cases}$$

Prof. Tsai

Minimum Shift-Keying (Cont.)

• Considering the **in-phase** component $\cos \theta(t)$

$$\theta(t) = \theta(2nT_b) \pm (\pi/2T_b)[t-2nT_b], (2n-1)T_b \le t < (2n+1)T_b$$

- If $\theta(2nT_b) = 0$, $\cos\theta(t) = \cos(\pm \pi t/2T_b) = +\cos(\pi t/2T_b)$
- If $\theta(2nT_b) = \pi$, $\cos \theta(t) = \cos(\pi \pm \pi t/2T_b) = -\cos(\pi t/2T_b)$
- The **in-phase** component $\cos \theta(t)$ depends only on $\theta(2nT_b)$
 - A binary waveform during $(2n-1)T_b \le t \le (2n+1)T_b$

• Considering the quadrature component $\sin \theta(t)$

$$\frac{\theta(t) = \theta((2n+1)T_b) \pm (\pi/2T_b)[t - (2n+1)T_b], 2nT_b \le t < (2n+2)T_b}{-\operatorname{If} \theta((2n+1)T_b) = \pi/2, \sin\theta(t) = +\sin(\pi t/2T_b)}$$

- If
$$\theta((2n+1)T_b) = -\pi/2$$
, $\sin \theta(t) = \sin(\pi + \pi t/2T_b) = -\sin(\pi t/2T_b)$

- The quadrature component $\sin \theta(t)$ depends only on $\theta((2n+1)T_b)$
 - A binary waveform during $2nT_b \le t \le (2n+2)T_b$

Prof. Tsai

Minimum Shift-Keying (Cont.)

- In the interval $(2n-1)T_b \le t \le (2n+1)T_b$, the polarity of $\cos \theta(t)$ depends only on $\theta(2nT_b)$
- The in-phase component consists of the half-cycle cosine pulse:

$$s_I(t) = \sqrt{2E_b/T_b} \cos \theta(t) = \sqrt{2E_b/T_b} \cos \left[\theta(2nT_b) \pm (\pi/2T_b)t\right]$$
$$= \pm \sqrt{2E_b/T_b} \cos \left(\pi t/2T_b\right)$$

- where "+": $\theta(2nT_b) = 0$; "-": $\theta(2nT_b) = \pi$

- In the interval $2nT_b \le t \le (2n+2)T_b$, the polarity of $\sin \theta(t)$ depends only on $\theta((2n+1)T_b)$
- The quadrature component consists of the half-cycle sine pulse:

$$s_O(t) = \sqrt{2E_b/T_b} \sin\theta(t) = \pm \sqrt{2E_b/T_b} \sin(\pi t/2T_b)$$

- where "+": $\theta((2n+1)T_b) = \pi/2$; "-": $\theta((2n+1)T_b) = -\pi/2$

- Considering the symbol transmitted in $2nT_b \le t \le (2n+1)T_b$, the phase states $\theta(2nT_b)$ and $\theta((2n+1)T_b)$ can each assume only one of two possible values, and one of **four** possibilities can arise:
 - 1. $\theta(2nT_b) = 0$ and $\theta((2n+1)T_b) = \pi/2$, which occur when sending symbol 1 (Phase transition: $+\pi/2$)
 - **2.** $\theta(2nT_b) = \pi$ and $\theta((2n+1)T_b) = \pi/2$, which occur when sending **symbol 0** (Phase transition: $-\pi/2$)

Prof. Tsai

Minimum Shift-Keying (Cont.)

- 3. $\theta(2nT_b) = \pi$ and $\theta((2n+1)T_b) = -\pi/2$, which occur when sending symbol 1 (Phase transition: $+\pi/2$)
- **4.** $\theta(2nT_b) = 0$ and $\theta((2n+1)T_b) = -\pi/2$, which occur when sending **symbol 0** (Phase transition: $-\pi/2$)
- The transmitted symbol depends on the **phase-state pair** $\theta(2nT_b)$ and $\theta((2n+1)T_b)$, or equivalently, the **phase transition**

- Similarly, considering the symbol in $(2n+1)T_b \le t \le (2n+2)T_b$, the phase states $\theta((2n+1)T_b)$ and $\theta((2n+2)T_b)$ can each be one of two possible values, and one of **four** possibilities can arise:
 - 1. $\theta((2n+1)T_b) = \pi/2$ and $\theta((2n+2)T_b) = \pi$, which occur when sending **symbol 1** (Phase transition: $+\pi/2$)
 - **2.** $\theta((2n+1)T_b) = -\pi/2$ and $\theta((2n+2)T_b) = \pi$, which occur when sending **symbol 0** (Phase transition: $-\pi/2$)

Prof. Tsai

Minimum Shift-Keying (Cont.)

- 3. $\theta((2n+1)T_b) = -\pi/2$ and $\theta((2n+2)T_b) = 0$, which occur when sending **symbol 1** (Phase transition: $+\pi/2$)
- **4.** $\theta((2n+1)T_b) = \pi/2$ and $\theta((2n+2)T_b) = 0$, which occur when sending **symbol 0** (Phase transition: $-\pi/2$)
- The symbol depends on the **phase-state pair** $\theta((2n+1)T_b)$ and $\theta((2n+2)T_b)$, or equivalently, the **phase transition**

- In the detection of the symbol transmitted in $0 \le t \le T_b$, we only need to consider the signal within $-T_b \le t \le 2T_b$
 - s_I within $-T_b \le t \le T_b$ and s_O within $0 \le t \le 2T_b$
- In the detection of the symbol transmitted in $T_b \le t \le 2T_b$, we only need to consider the signal within $0 \le t \le 3T_b$
 - s_Q within $0 \le t \le 2T_b$ and s_I within $T_b \le t \le 3T_b$

Prof. Tsai 39

Signal-Space Diagram of MSK

We define two new orthonormal basis functions $\phi_1(t)$ and $\phi_2(t)$ to characterize the generation of MSK **Coherent detection** $\phi_1(t) = \sqrt{2/T_b} \frac{\cos(\pi t/2T_b)}{\cos(2\pi f_c t)} \cos(2\pi f_c t) = \sqrt{T_b}$ $\phi_2(t) = \sqrt{2/T_b} \frac{\sin(\pi t/2T_b)}{\sin(2\pi f_c t)}, \quad 0 \le t \le 2T_b$

The MSK signal is represented as

$$s(t) = s_1 \phi_1(t) + s_2 \phi_2(t), -T_b \le t \le 2T_b$$

 $s(t) = \sqrt{2E_b/T_b} \cos \theta(t) \cos(2\pi f_c t) - \sqrt{2E_b/T_b} \sin \theta(t) \sin(2\pi f_c t)$

- where
$$s_1 = \int_{-T_b}^{T_b} s(t)\phi_1(t) dt = \sqrt{E_b} \cos[\theta(0)], -T_b \le t \le T_b$$

$$s_2 = \int_{0}^{2T_b} s(t)\phi_2(t) dt = \sqrt{E_b} \sin[\theta(T_b)], 0 \le t \le 2T_b -s_Q$$

- Both integrals are evaluated for a time interval equal to $2T_h$

Signal-Space Diagram of MSK (Cont.)

- The signal constellation for an MSK signal is **two-dimensional** (i.e., N = 2), with **four possible message points** (i.e., M = 4)
- For the symbol transmitted in $0 \le t \le T_b$, we have \Rightarrow
- Moving in a counterclockwise direction, the coordinates of the message points are:

$$\left(+ \sqrt{E_b} \,, + \sqrt{E_b} \, \right) : \text{Symbol 0}$$

$$\left(- \sqrt{E_b} \,, + \sqrt{E_b} \, \right) : \text{Symbol 1}$$

$$\left(- \sqrt{E_b} \,, - \sqrt{E_b} \, \right) : \text{Symbol 0}$$

$$\left(+ \sqrt{E_b} \,, - \sqrt{E_b} \, \right) : \text{Symbol 1}$$

Prof. Tsai

Signal-Space Diagram of MSK (Cont.)

Each symbol corresponds to a binary symbol and each symbol shows up in two opposite quadrants
 Different mapping

$0 \le t \le T_b$	Symbol	$\theta(0)$	$\theta(T_b)$	$s_1 \left(\mathbf{s_I} \right)$	$s_2 \left(-s_{\underline{o}} \right)$	
s_I : "+" $\theta(0T_b) = 0$	0	0	$-\pi/2$	$+\sqrt{E_b}$	$+\sqrt{E_b}$	
"-" $\theta(0T_b) = \pi$	1	π	$-\pi/2$	$-\sqrt{E_b}$	$+\sqrt{E_b}$	
s_Q : "+" $\theta(T_b) = \pi/2$	0	π	$+\pi/2$	$-\sqrt{E_b}$	$-\sqrt{E_b}$	
"-", $\theta(T_b) = -\pi/2$	1	0	$+\pi/2$	$+\sqrt{E_b}$	$-\sqrt{E_b}$	
$T_b \le t \le 2T_b$	Symbol	$\theta(T_b)$	$\theta(2T_b)$	$s_1 \left(\mathbf{s_I} \right)$	$s_2 \left(-s_{\underline{Q}}\right)$	
	0	$+\pi/2$	0	$+\sqrt{E_b}$	$-\sqrt{E_b}$	
s_Q : "+" $\theta(T_b) = \pi/2$ "-" $\theta(T_b) = -\pi/2$	1	$-\pi/2$	0	$+\sqrt{E_b}$	$+\sqrt{E_b}$	
S_{t} : "+" $\theta(2T_{t}) = 0$	0	$-\pi/2$	π	$-\sqrt{E_b}$	$+\sqrt{E_h}$	

Prof. Tsai

 $+\pi/2$

 π

1

" $\theta(2T_b) = \pi$

• Symbol within $0 \le t \le T_b$

Symbol	$\theta(0)$	$\theta(T_b)$	<i>s</i> ₁	s_2
0	0	$-\pi/2$	$+\sqrt{E_b}$	$+\sqrt{E_b}$
1	π	$-\pi/2$	$-\sqrt{E_b}$	$+\sqrt{E_b}$
0	π	$+\pi/2$	$-\sqrt{E_b}$	$-\sqrt{E_b}$
1	0	$+\pi/2$	$+\sqrt{E_b}$	$-\sqrt{E_b}$

Prof. Tsai

Minimum Shift-Keying (Cont.)

• Symbol within $T_b \le t \le 2T_b$

Symbol	$\theta(T_b)$	$\theta(2T_b)$	s_1	s_2
0	$+\pi/2$	0	$+\sqrt{E_b}$	$-\sqrt{E_b}$
1	$-\pi/2$	0	$+\sqrt{E_b}$	$+\sqrt{E_b}$
0	$-\pi/2$	π	$-\sqrt{E_b}$	$+\sqrt{E_b}$
1	$+\pi/2$	π	$-\sqrt{E_b}$	$-\sqrt{E_b}$

MSK Waveforms

• The two modulation frequencies are $f_1 = 5/4T_b$ and $f_2 = 3/4T_b$ and $\theta(0)$ is zero at time t = 0

Prof. Tsai 45

Error Probability of MSK

- In the case of an AWGN channel, the received signal is given by x(t) = s(t) + w(t)
 - where s(t) is the transmitted MSK signal and w(t) is the white Gaussian noise with zero mean and power spectral density $N_0/2$
- To decide whether symbol 1 or symbol 0 was sent in $0 \le t \le T_b$, we establish a procedure for the use of x(t) to detect the **phase** states $\theta(0)$ and $\theta(T_b)$

$$x_{1} = \int_{-T_{b}}^{T_{b}} x(t)\phi_{1}(t) dt = s_{1} + w_{1}; \quad x_{2} = \int_{0}^{2T_{b}} x(t)\phi_{2}(t) dt = s_{2} + w_{2}$$

$$- s_{I}(t): \text{ If } x_{1} > 0, \ \hat{\theta}(0) = 0; \text{ if } x_{1} < 0, \ \hat{\theta}(0) = \pi$$

$$- s_{Q}(t): \text{ If } x_{2} > 0, \ \hat{\theta}(T_{b}) = -\pi/2; \text{ if } x_{2} < 0, \ \hat{\theta}(T_{b}) = \pi/2$$

Error Probability of MSK (Cont.)

- If estimates $\hat{\theta}(0) = 0$ and $\hat{\theta}(T_b) = -\pi/2$, or alternatively if $\hat{\theta}(0) = \pi$ and $\hat{\theta}(T_b) = \pi/2$, then the receiver decides in favor of **symbol 0**
- If $\hat{\theta}(0) = \pi$ and $\hat{\theta}(T_b) = -\pi/2$, or alternatively if $\hat{\theta}(0) = 0$ and $\hat{\theta}(T_b) = \pi/2$ then the receiver decides in favor of **symbol 1**
- The receiver makes an error when the I-channel assigns the wrong value to $\theta(0)$ (for symbol $T_b \le t \le 2T_b$) or the Q-channel assigns the wrong value to $\theta(T_b)$ (for symbol $0 \le t \le T_b$)
- It follows, therefore, that the BER for the **coherent detection** of MSK signals is given by $P_e = \frac{1}{2} \operatorname{erfc} \left(\sqrt{E_b/N_0} \right)$
 - which is exactly the same as that for BPSK and QPSK
- This good performance is the result of **coherent detection** being performed on the basis of observations over $2T_b$ interval

Prof. Tsai

Non-coherent Detection of MSK Signals

- The data information is not relied on the absolute signal phase
 - It relies on the **phase transition** between two successive received symbols
 - Non-coherent data detection of MSK signals is possible
- Similar to the detection approach for $\pi/4$ -DQPSK signals
 - The receiver need to detect the phase states $\theta(0)$ and $\theta(T_b)$
 - It computes the **projections** of a noisy signal x(t) onto the original basis functions $\phi_1(t)$ and $\phi_2(t)$ to extract the phase
 - Then, it applies a differential detector to determine the phase transition between two successive received symbols
- In comparison with **coherent detection**, error performance is **degraded** because of no **carrier phase** is available

Power Spectra of MSK Signals

- We assume that the input binary wave is random, with symbols 1 and 0 being equally likely and the symbols sent during adjacent time slots being **statistically independent**
- Depending on the value of phase state $\theta(0)$, the **in-phase** component equals +g(t) or -g(t), where the **pulse-shaping** function

$$g(t) = \begin{cases} \sqrt{2E_b/T_b} \frac{\cos(\pi t/2T_b)}{0}, & -T_b \le t \le T_b \\ 0, & \text{otherwise} \end{cases}$$

• The power spectral density of the in-phase component equals

$$S_g(f) = \frac{16E_b}{\pi^2} \left[\frac{\cos(2\pi T_b f)}{16T_b^2 f^2 - 1} \right]^2$$

Prof. Tsai

Power Spectra of MSK Signals (Cont.)

• Depending on the value of the phase state $\theta(T_b)$, the **quadrature** component equals +g(t) or -g(t), where

$$g(t) = \begin{cases} \sqrt{2E_b/T_b} \frac{\sin(\pi t/2T_b)}{0}, & 0 \le t \le 2T_b \\ 0, & \text{otherwise} \end{cases}$$

- The PSD is the same as that of the in-phase component
- The in-phase and quadrature components of the MSK signal are statistically independent
- The baseband power spectral density of s(t) is given by

$$S_B(f) = 2S_g(f) = \frac{32E_b}{\pi^2} \left[\frac{\cos(2\pi T_b f)}{16T_b^2 f^2 - 1} \right]^2$$

$$h = \frac{1}{2} \Rightarrow \text{Different to}$$

$$\text{CPBFSK with } h = 1$$

• The baseband power spectral density of the MSK signal falls off as the **inverse fourth power** of frequency for f >> 0

Power Spectra of MSK Signals (Cont.)

- The QPSK signal it falls off as the **inverse square** of frequency
- MSK does not produce as much interference outside the signal band of interest as QPSK does

Prof. Tsai 51

Gaussian-Filtered MSK (GMSK)

- Some desirable properties of MSK:
 - Modulated signal with constant envelope
 - Relatively narrow-bandwidth occupancy
 - Coherent detection performance equivalent to that of QPSK
- However, the **out-of-band** spectral characteristics of MSK signals may not satisfy some stringent requirements
 - At $fT_b = 0.5$, the baseband PSD of the MSK signal drops by only $10 \log_{10} 9 = 9.54 \text{ dB}$ below its midband value
 - If the transmission bandwidth is set as $1/T_b$ ($f_c \pm 1/T_b$), the **adjacent channel interference** of using MSK is **not low enough** to satisfy the practical requirements of a wireless multiuser-communications environment

Gaussian-Filtered MSK (GMSK) (Cont.)

- We may **modify the power spectrum** of MSK into a more compact form while maintaining the constant-envelope property
- This modification can be achieved through the use of a **pre-modulation low-pass filter**,
 - A baseband pulse-shaping filter
- The pulse-shaping filter should satisfy the following conditions:
 - Frequency response with narrow bandwidth and sharp cutoff characteristics
 - Impulse response with relatively **low overshoot**
 - The carrier phase of the modulated signal assuming the two values $\pm \pi/2$ at **odd** multiples of T_b and the two values 0 and π at **even** multiples of T_b **as in MSK**

Prof. Tsai 53

Gaussian-Filtered MSK (GMSK) (Cont.)

- These three conditions can be satisfied by using a baseband pulse-shaping filter whose **impulse response** (and, likewise, its **frequency response**) is defined by a **Gaussian function**
- The resulting method of binary FM is naturally referred to as Gaussian-filtered minimum-shift keying (GMSK)
- The transfer function H(f) and impulse response h(t) of the pulse-shaping filter

$$H(f) = \exp\left[-\frac{\ln 2}{2} \left(\frac{f}{W}\right)^2\right]; \quad h(t) = \sqrt{\frac{2\pi}{\ln 2}} W \exp\left(-\frac{2\pi^2}{\ln 2} W^2 t^2\right)$$

- where \overline{W} is the 3 dB baseband bandwidth of the filter

• The **response** of this Gaussian filter to a **rectangular pulse** of unit amplitude and duration T_b is $g(t) = \int_{-T_b/2}^{T_b/2} h(t-\tau) d\tau$

Gaussian-Filtered MSK (GMSK) (Cont.)

- g(t) is noncausal and, therefore, not physically realizable
- For a causal response, g(t) must be **truncated** and **shifted in** time

• As WT_b is **reduced**, the **time spread** of the frequency-shaping pulse is **increased**

• Inter-symbol interference (ISI) is introduced

Truncated at $t = \pm 2.5 T_b$ Shifted in time by $2.5 T_b$

Prof. Tsai 55

Gaussian-Filtered MSK (GMSK) (Cont.)

The power spectra of MSK and GMSK signals

• The condition of $WT_b = \infty$ corresponds to the case of the ordinary MSK

Gaussian-Filtered MSK (GMSK) (Cont.)

- The introduced Inter-symbol interference (ISI) degrades the symbol error performance at the receiver
- The time-bandwidth product WT_b offers a tradeoff between spectral compactness and performance loss
- The average symbol error rate is

$$P_e = \frac{1}{2} \operatorname{erfc} \left(\sqrt{\alpha E_b / 2N_0} \right)^{\Box}$$

$$- \alpha = 2: \text{ no degradation}$$

$$-WT_b = 0.3 \Rightarrow \alpha = 1.8$$

Prof. Tsai 57

M-ary FSK

M-ary FSK

• For M-ary FSK, the transmitted signals are defined by

$$s_i(t) = \sqrt{\frac{2E}{T}} \cos \left[\frac{\pi}{T} (n_c + i) t \right], \quad 0 \le t \le T$$

- where $i = 1, 2, \dots, M$; the carrier frequency: $f_c = n_c/(2T)$ for some fixed integer n_c ; the symbol duration: T; the symbol energy E
- Since the individual signal frequencies are separated by 1/(2T) Hz, the M-ary FSK signals constitute an **orthogonal set**; that is,

$$\int_0^T s_i(t) s_j(t) dt = 0, \quad i \neq j$$

• A complete orthonormal set of basis functions, as shown by

$$\phi_i(t) = \frac{1}{\sqrt{E}} s_i(t), \quad 0 \le t \le T, i = 1, 2, \dots, M$$

Prof. Tsai 59

Error Probability of M-ary FSK

- For the coherent detection of *M*-ary FSK, the optimum receiver consists of **a bank of** *M* **correlators** or **matched filters**
- At the sampling times t = kT, the receiver makes decisions based on the **largest** matched filter output

- The **maximum likelihood** decoding rule

- An exact formula for the probability of symbol error is difficult
- Since the minimum distance in M-ary FSK is $\sqrt{2E}$, an **upper bound** on the average probability of symbol error

$$P_e \le \frac{1}{2} (M-1) \operatorname{erfc} \left(\sqrt{\frac{E}{2N_0}} \right)$$

Power Spectra of M-ary FSK Signals

- The spectral analysis of *M*-ary FSK signals is **complicated**
- A special case of assigning uniformly spacing frequencies to the multi-levels with the frequency deviation h = 1/2
 - CPFSK
 - The M signal frequencies are separated by 1/2T, where T is the symbol duration
- The baseband power PSD of M-ary FSK signals for M = 2, 4, 8

Prof. Tsai

Bandwidth Efficiency of M-ary FSK

- For **coherent detection**, the adjacent signals of M-ary FSK need only be separated from each other by a difference 1/2T
- The **channel bandwidth** required to transmit *M*-ary FSK signals is $B \approx M/2T$
 - The symbol period is equal to $T = T_b \log_2 M$
 - The bit rate is equal to $R_b = 1/T_b$
- Hence, we may redefine the channel bandwidth for *M*-ary FSK

$$B = R_b M / 2 \log_2 M$$

• The **bandwidth efficiency** of M-ary FSK signals is therefore

 $\rho = \frac{R_b}{B} = \frac{2\log_2 M}{M}$

Bandwidth Efficiency of *M*-ary FSK (Cont.)

• For *M*-ary FSK, the increase in the number of levels *M* tends to decrease the bandwidth efficiency

M	2	4	8	16	32	64
ρ (bits/s/Hz)	1	1	0.75	0.5	0.3125	0.1875

• By contrast, for *M*-ary **PSK**, the **increase** in the number of levels *M* tends to **increase** the bandwidth efficiency

M	2	4	8	16	32	64
ρ (bits/s/Hz)	0.5	1	1.5	2	2.5	3

• In other words, *M*-ary PSK signals are spectrally efficient, whereas *M*-ary FSK signals are spectrally inefficient

Prof. Tsai

Discussion of Orthogonality

Binary FSK – Orthogonality

• Considering binary FSK, the transmitted signals are

$$s_i(t) = A\cos(2\pi f_i t + \theta_i), \quad 0 \le t < T_b, \quad i = 1, 2$$

- where θ_i represents the carrier phase at the initial time
- To maintain the orthogonality between $s_1(t)$ and $s_2(t)$

$$\langle s_{1}(t), s_{2}(t) \rangle = \int_{0}^{T_{b}} s_{1}(t) s_{2}(t) dt = A^{2} \int_{0}^{T_{b}} \cos(2\pi f_{1}t + \theta_{1}) \cos(2\pi f_{2}t + \theta_{2}) dt$$

$$= \frac{A^{2}}{2} \int_{0}^{T_{b}} \cos\left[2\pi (f_{1} + f_{2})t + \theta_{1} + \theta_{2}\right] dt + \frac{A^{2}}{2} \int_{0}^{T_{b}} \cos\left[2\pi (f_{1} - f_{2})t + \theta_{1} - \theta_{2}\right] dt$$

$$= A^{2} \left\{ \sin\left[2\pi (f_{1} + f_{2})T_{b} + \theta_{1} + \theta_{2}\right] - \sin\left(\theta_{1} + \theta_{2}\right) \right\} / 4\pi (f_{1} + f_{2})$$

$$= A^{2} \left\{ \sin\left[2\pi (f_{1} - f_{2})T_{b} + \theta_{1} - \theta_{2}\right] - \sin\left(\theta_{1} - \theta_{2}\right) \right\} / 4\pi (f_{1} - f_{2})$$

• Assuming $f_i >> 0$, the first term can be ignored

$$\sin x \sin y = \frac{1}{2} \left[\cos(x - y) - \cos(x + y) \right]; \cos x \cos y = \frac{1}{2} \left[\cos(x - y) + \cos(x + y) \right]$$

$$\sin x \cos y = \frac{1}{2} \left[\sin(x + y) + \sin(x - y) \right]; \cos x \sin y = \frac{1}{2} \left[\sin(x + y) - \sin(x - y) \right]$$

Prof. Tsai

Binary FSK – Orthogonality (Cont.)

- Continuous-phase binary FSK: $\theta_1 = \theta_2 \implies \theta_1 \theta_2 = 0$
 - Different symbol intervals may have different initial phases
 - Depending on the ending phase of the previous symbol
- If $f_1 f_2 = m/2T_b$, for an integer m > 0 Such as MSK

$$\langle s_1(t), s_2(t) \rangle \approx A^2 \left\{ \sin \left[2\pi (f_1 - f_2) T_b + \theta_1 - \theta_2 \right] - \sin \left(\theta_1 - \theta_2 \right) \right\} / 4\pi (f_1 - f_2)$$

= $A^2 T_b \left\{ \sin \left(m\pi \right) \right\} / 2m\pi$

- The minimum value that makes $\langle s_1(t), s_2(t) \rangle = 0$ is m = 1
- The minimum frequency spacing that maintains the orthogonality between $s_1(t)$ and $s_2(t)$ is $\Delta f = 1/2T_b$
- For continuous-phase FSK, the two sinusoidal carriers are said to be **coherently orthogonal**
 - Because $\theta_1 = \theta_2$, the minimum freq. spacing is $\Delta f = 1/2T_b$

Binary FSK – Orthogonality (Cont.)

• **Non-continuous-phase** binary FSK: $\theta_1 \neq \theta_2 \Rightarrow \theta_1 - \theta_2 = \Delta \theta \neq 0$ - If $f_1 - f_2 = m/2T_b$, for an integer m > 0

$$\langle s_1(t), s_2(t) \rangle \approx A^2 \left\{ \sin \left[2\pi (f_1 - f_2) T_b + \theta_1 - \theta_2 \right] - \sin \left(\theta_1 - \theta_2 \right) \right\} / 4\pi (f_1 - f_2)$$

$$= A^2 \left\{ \sin \left[\underline{m\pi} + \Delta \theta \right] - \sin \left(\Delta \theta \right) \right\} / 4\pi (f_1 - f_2)$$

- The minimum value that makes $\langle s_1(t), s_2(t) \rangle = 0$ is m = 2
- The minimum frequency spacing that maintains the orthogonality between $s_1(t)$ and $s_2(t)$ is $\Delta f = 1/T_h$
- For non-continuous-phase FSK, the two sinusoidal carriers are said to be **noncoherently orthogonal**
 - Because there is **no relationship** between the two phases
 - The minimum frequency spacing is $\Delta f = 1/T_b$
 - Which is **twice** as much as that of continuous-phase FSK

Prof. Tsai

Homework

- You must give detailed derivations or explanations, otherwise you get no points.
- Communication Systems, Simon Haykin (4th Ed.)
- 6.20;
- 6.22;
- 6.27;