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Orthogonal Signaling
• Orthogonal signals are defined as a set of equal energy signals 

sm(t), 1 ≤ m ≤ M, such that

• The signals are linearly independent and hence the number of
orthonormal basis functions is N = M

– where E is the symbol energy

• The signal vectors can be represented as 
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Orthogonal Signaling (Cont.)
• The distance between two signal vectors sm(t) and sn(t) is  

– All signal points are equally spaced

– The distance is the minimum distance dmin

• Because each symbol contains log2M bits 

• Hence, 

• The increase in M improves the power efficiency

– However, a high-dimension signal space is required for 
signal representation  Degrades the bandwidth efficiency

• For M-PSK:  

2 , ,1 ,mnd E m n m n M   

2logbE E M

min 22 logbd E M

Proportional to 
the number of bits

in a symbol

min 22 log sin( )bd E M M
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Frequency-Shift Keying (FSK)
• Frequency-Shift Keying (FSK) is a special case of the 

construction of orthogonal signals

• Consider the construction of orthogonal signal waveforms that 
differ in frequency

• The messages are transmitted by a set of signals that only differ 
in frequency

      2 2
Re cos 2 , 0cj f t

m m c

E
s t s t e f m f t t T

T
        

  22
, 0j m ft

m

E
s t e t T

T
   



Prof. Tsai 7

Linear and Nonlinear Modulation
• In QAM signaling (ASK and PSK can be considered as special 

cases), the lowpass equivalent of the signal is of the form 
Amg(t) where Am is a complex number 

– The sum of two lowpass equivalent signals is the general 
form of the lowpass equivalent of a QAM signal 

– The sum of two QAM signals is another QAM signal

– Hence, ASK, PSK, and QAM are sometimes called linear 
modulation schemes

• On the other hand, FSK signaling does not satisfy this property

– Therefore it belongs to the class of nonlinear modulation 
schemes

Prof. Tsai

Continuous-Phase Frequency-Shift 
Keying (CPFSK) Modulation
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Continuous-Phase Binary FSK
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Continuous-Phase (CP) Binary FSK
• In binary FSK, symbols 1 and 0 are distinguished from each 

other by transmitting one of two sinusoidal waves that differ in 
frequency by a fixed amount

– where Eb is the signal energy per bit and fi = (nc + i)/Tb is 
the transmitted frequency for some fixed integer nc

– Symbol 1 is represented by s1(t) and symbol 0 by s2(t)  
• The FSK signal described here is a continuous-phase signal

– The phase continuity is always maintained, including the 
inter-bit switching times

– Specifically, if fi = (nc + i)/Tb  zero-phase at t = 0 and t = Tb

– It is not essential that all symbols have the same initial phase
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Continuous-Phase Binary FSK (Cont.)
• Since s1(t) and s2(t) are orthogonal, we have the set of 

orthonormal basis functions described by

• Correspondingly, the coefficient sij for i = 1, 2 and j = 1, 2 is 
defined by 

• The two message points are defined by the signal vectors
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Continuous-Phase Binary FSK (Cont.)
• The Euclidean distance || s1 – s2 || is equal to 2 bE

Z1

Z2

Not the IQ plane
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Generation of CP Binary FSK Signals
• A binary FSK signal generator consists of three components:

– On–off level encoder: the output of which is a constant 
amplitude of Eb for symbol 1 and zero for symbol 0

– Pair of oscillators: whose frequencies f1 and f2 differ by an 
integer multiple of                                                               
the bit rate 1/Tb

– Inverter: inverse the                                                           
signal in the lower branch

symbol 1

symbol 0

off  on
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Generation of CP BFSK Signals (Cont.)
• To meet the phase continuity requirement  

– The two oscillators are synchronized with each other 

• Alternatively, we may use a voltage-controlled oscillator
(VCO), in which case phase continuity is automatically 
satisfied 

– Only one oscillator

– With the output frequency controlled by the input signal
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Detection of CP Binary FSK Signals
• A coherent detector consists of two correlators with a 

common input: the noisy received signal x(t)     

– The local coherent reference signals: 1(t) and 2(t)

• The correlator outputs are then subtracted, one from the other

• The resulting difference is then compared with a threshold: zero

– If y > 0: symbol 1; if y < 0: symbol 0; if y = 0: random guess
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Error Probability of CP Binary FSK
• The observation vector x has two elements x1 and x2 that are 

defined by 

– where x(t) is the received signal, whose form depends on 
which symbol was transmitted

• Given that symbol i was transmitted, x(t) = si(t) + w(t) 

– where w(t) is the sample function of a white Gaussian noise 
process of zero mean and power spectral density N0/2  

– If i = 1, [x1] = Eb and [x2] = 0

– If i = 2, [x1] = 0 and [x2] = Eb 

• We define a new Gaussian random variable Y with y = x1 – x2

– [y | 1] = +Eb and  [y | 0] = –Eb

– Var[Y] = Var[X1] + Var[X2] = N0

   
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Error Probability of CP BFSK (Cont.)
• Suppose that symbol i was sent. The conditional probability 

density function of the random variable Y is given by 

• The conditional probability of error given that symbol i was 
sent is 

• Finally, the BER for binary FSK using coherent detection is
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Power Spectra of Binary FSK Signals
• Consider the case that the two transmitted frequencies f1 and f2

differ by an amount equal to the bit rate 1/Tb

– The arithmetic mean of f1 and f2: the carrier frequency fc

– f1 = fc + 1/2Tb and f2 = fc – 1/2Tb

• The signal can be express as a frequency-modulated (FM) 
signal 

– “–”: symbol 1; “+”: symbol 0

 
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Power Spectra of Binary FSK Signals (Cont.)

• The in-phase component: completely independent of the input 
binary wave 

– The baseband PSD consists of two delta functions
weighted by the factor  Eb/2Tb and occurring at  f = 1/2Tb

• The quadrature component: directly related to the input 
binary sequence 

– – g(t) for symbol 1 and + g(t) for symbol 0

– The baseband PSD of g(t) is 
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Power Spectra of Binary FSK Signals (Cont.)
• Because the in-phase and quadrature components are 

independent of each other, the overall baseband PSD is    

• The passband PSD becomes 

• The PSD contains two discrete frequency components located 
at f1 and f2, with the sum power up to 1/2 the total signal power

– The discrete frequency components provide a practical basis 
for synchronizing the receiver with the transmitter 

– The power is independent to data  low power efficiency
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Power Spectra of Binary FSK Signals (Cont.)
• The baseband power spectral density of a binary FSK signal 

with continuous phase 

– Ultimately falls off as                                                                
the inverse fourth                                                                          
power of frequency                                                                        
f – 4
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Signal Phase of CP FSK
• For M-PSK, the transmitted signal is defined as

• For CP BFSK, the transmitted signal is defined as

– where (0) denotes the value of the phase at time t = 0

• Can we describe and analyze the CP BFSK signal from the 
viewpoint of signal phase?

– where the i(t) is a time-varying phase 

• Unlike M-PSK, the of signal phase of the CP BFSK signal is 
not a constant during a symbol duration

( ) 2 cos(2 ), 0 ; 2( 1)i c i is t E T f t t T i M        

 ( ) 2 cos 2 (0) , 0i b b i bs t E T f t t T    

 ( ) 2 cos 2 ( ) , 0i b b c i bs t E T f t t t T    
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Signal Phase of CP FSK
• What is the phasor trajectory of a signal with a frequency 

different from the carrier frequency?

– The phasor of the carrier signal is set as the reference phase 
(zero phase)

– If the signal frequency f1 > fc

• The phasor moves with                                                      
a positive frequency f1 – fc

– If the signal frequency f2 < fc

• The phasor moves with                                                      
a negative frequency f2 – fc

• The phase i(t) of a CPFSK signal increases or decreases
linearly with time during each bit duration of Tb

I

Q

fc

f1

f2

f1 – fc

fc – f2
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Continuous-Phase Frequency-Shift Keying
• In the detection of binary FSK signal, the phase information 

contained in the received signal is not fully exploited

• By using the continuous-phase property in detection, it is 
possible to improve the noise performance at the receiver

– This improvement is achieved at the expense of increased 
system complexity

• Consider a continuous-phase frequency-shift keying (CPFSK) 
signal

– where (0) denotes the value of the phase at time t = 0
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CPFSK (Cont.)
• Another way of representing the CPFSK signal s(t) is to express 

it as a conventional angle-modulated signal

– where (t) is the phase of s(t) at time t

• The phase (t) of a CPFSK signal increases or decreases
linearly with time during each bit duration of Tb

• That is,

– where “+”: symbol 1; “–”: symbol 0; and h: a dimensionless 
parameter referred to as the deviation ratio

• Because 

– We deduce the relation:

– h is normalized with respect to 1/Tb: if f1 – f2 = 1/Tb ,  h = 1
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CPFSK – Phase Trellis
• At time t = Tb,

• Sending symbol 1 (symbol 0) increases (decreases) the phase of 
a CPFSK signal s(t) by  h radians 

• Phase tree: A plot shows the                                                      
transitions of phase across                                                 
successive signaling intervals

• The phase of a CPFSK signal                                                            
is an odd or even multiple of                                                   
h radians at odd or even
multiples of Tb, respectively. 

    for symbol 1
0

for symbol 0b

h
T

h


 


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CPFSK – Phase Trellis (Cont.)
• The phase tree shows phase continuity of the CPFSK signal 

• The CP BFSK with  f1 – f2 = 1/Tb is also a CPFSK signal 

– With h = 1

• Hence, for CP BFSK, the phase change over one bit interval 
is  radians 

– A change of + is exactly the same as a change of – , 
modulo 2

– Therefore, there is no memory for this case  

– Knowing which particular change (+ or – ) occurred in 
the previous signaling interval provides no help in the 
current signaling interval 
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CPFSK – Phase Trellis (Cont.)
• In contrast, we have a completely different situation when the 

deviation ratio h is assigned the special value of h = 1/2

– The phase takes on /2 at odd multiples of Tb , and 

– The phase takes on 0 and  at even multiples of Tb 

The data sequence: 1101000
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Minimum Shift-Keying (MSK)
• With h = 1/2, symbol 1 and symbol 0 do not interfere with 

each other in the process of detection

– The two signal points are different

– The frequency deviation: f1 – f2 equals half the bit rate(1/2Tb)

• The frequency deviation h = 1/2 is the minimum frequency 
spacing that allows the two FSK signals representing symbol 1 
and symbol 0 to be coherently orthogonal

• The CPFSK signal with h = 1/2                                                      
is commonly referred to as                                                               
minimum shift-keying (MSK) 

I

Q
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Minimum Shift-Keying (Cont.)
• We may expand the CPFSK signal s(t) in terms of its in-phase 

and quadrature components as

– In-phase: cos(t); Quadrature: sin(t) 

 
        
        
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       ( ) 2 cos cos 2 2 sin sin 2b b c b b cs t E T t f t E T t f t    
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the previous

data sequence
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2nTb (2n+1)Tb(2n+1)Tb(2n–1)Tb

(2n+2)Tb2nTb

h = 1/2
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Minimum Shift-Keying (Cont.)
• Considering the in-phase component cos(t) 

– If (2nTb) = 0,  cos(t) = cos(  t/2Tb) = + cos( t/2Tb) 

– If (2nTb) = ,  cos(t) = cos(   t/2Tb) = – cos( t/2Tb) 

• The in-phase component cos(t) depends only on (2nTb) 

– A binary waveform during (2n–1)Tb  t  (2n+1)Tb

/2

–

–/2

0 t
0–2Tb 2Tb

          2 2 2 , 2 1 2 1b b b b bt nT T t nT n T t n T        

(2nTb) = 0 (2nTb) = 
cos

+ cos( t/2Tb) – cos( t/2Tb)
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Minimum Shift-Keying (Cont.)
• Considering the quadrature component sin(t) 

– If ((2n+1)Tb) = /2, sin(t) = + sin( t/2Tb) 

– If ((2n+1)Tb) = –/2, sin(t) = sin(+t/2Tb) = – sin(t/2Tb) 

• The quadrature component sin(t) depends only on ((2n+1)Tb) 

– A binary waveform during 2nTb  t  (2n+2)Tb

          2 1 2 2 1 , 2 2 2b b b b bt n T T t n T nT t n T            

t
0 2Tb 4Tb


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0

((2n+1)Tb) = /2 ((2n+1)Tb) = –/2

sin

+ sin(t/2Tb) – sin(t/2Tb)
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Minimum Shift-Keying (Cont.)
• In the interval (2n–1)Tb  t  (2n+1)Tb, the polarity of cos(t) 

depends only on (2nTb) 

• The in-phase component consists of the half-cycle cosine pulse:

– where “+”: (2nTb) = 0; “–”: (2nTb) = 
• In the interval 2nTb  t  (2n+2)Tb, the polarity of sin(t) 

depends only on ((2n+1)Tb) 

• The quadrature component consists of the half-cycle sine pulse:

– where “+”: ((2n+1)Tb) = /2; “–”: ((2n+1)Tb) = –/2   

     
 

( ) 2 cos 2 cos 2 2

2 cos 2

I b b b b b b

b b b

s t E T t E T nT T t

E T t T

  


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Minimum Shift-Keying (Cont.)
• Considering the symbol transmitted in 2nTb  t  (2n+1)Tb, the 

phase states (2nTb) and ((2n+1)Tb) can each assume only one 
of two possible values, and one of four possibilities can arise:
– 1. (2nTb) = 0 and ((2n+1)Tb) =  /2, which occur when 

sending symbol 1 (Phase transition: + /2)
– 2. (2nTb) =  and ((2n+1)Tb) =  /2, which occur when 

sending symbol 0 (Phase transition: – /2)


/2

–

–/2

0 t
0–2Tb 2Tb 4Tb 6Tb 8Tb
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Minimum Shift-Keying (Cont.)
– 3. (2nTb) =  and ((2n+1)Tb) = – /2, which occur when 

sending symbol 1 (Phase transition: + /2)

– 4. (2nTb) = 0 and ((2n+1)Tb) = – /2, which occur when 
sending symbol 0 (Phase transition: – /2)

• The transmitted symbol depends on the phase-state pair 
(2nTb) and ((2n+1)Tb), or equivalently, the phase transition



/2

–

–/2

0 t
0–2Tb 2Tb 4Tb 6Tb 8Tb
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Minimum Shift-Keying (Cont.)
• Similarly, considering the symbol in (2n+1)Tb  t  (2n+2)Tb, 

the phase states ((2n+1)Tb) and ((2n+2)Tb) can each be one 
of two possible values, and one of four possibilities can arise:
– 1. ((2n+1)Tb) =  /2 and ((2n+2)Tb) =  , which occur 

when sending symbol 1 (Phase transition: + /2)
– 2. ((2n+1)Tb) = – /2  and ((2n+2)Tb) = , which occur 

when sending symbol 0 (Phase transition: – /2)


/2

–

–/2

0 t
0–2Tb 2Tb 4Tb 6Tb 8Tb
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Minimum Shift-Keying (Cont.)
– 3. ((2n+1)Tb) = – /2 and ((2n+2)Tb) = 0, which occur 

when sending symbol 1 (Phase transition: + /2)

– 4. ((2n+1)Tb) =  /2 and ((2n+2)Tb) = 0, which occur 
when sending symbol 0 (Phase transition: – /2)

• The symbol depends on the phase-state pair ((2n+1)Tb) and 
((2n+2)Tb), or equivalently, the phase transition



/2

–

–/2

0 t
0–2Tb 2Tb 4Tb 6Tb 8Tb
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Minimum Shift-Keying (Cont.)
• In the detection of the symbol transmitted in 0  t  Tb, we only 

need to consider the signal within –Tb  t  2Tb

– sI within –Tb  t  Tb and sQ within 0  t  2Tb

• In the detection of the symbol transmitted in Tb  t  2Tb, we 
only need to consider the signal within 0  t  3Tb

– sQ within 0  t  2Tb and sI within Tb  t  3Tb

–Tb 0 Tb 2Tb 3Tb

–Tb 0 Tb 2Tb

0 Tb 2Tb

–Tb 0 Tb 2Tb

3Tb

–Tb 0 Tb 2Tb
Time shift

t

For a sequence of symbols, we 
need to consider an interval of
–Tb  t  2Tb or 0  t  3TbsI

sQ

ISI is
introduced
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Signal-Space Diagram of MSK
• We define two new orthonormal basis functions 1(t) and 2(t) 

to characterize the generation of MSK   

• The MSK signal is represented as

– where  

– Both integrals are evaluated for a time interval equal to 2Tb

1 1 2 2( ) ( ) ( ), 2b bs t s t s t T t T     

 

 
1 1

2

2 20

( ) ( ) cos (0) ,

( ) ( ) sin ( ) , 0 2

b

b

b

T

b b bT

T

b b b

s s t t dt E T t T

s s t t dt E T t T

 

 


    

    




       ( ) 2 cos cos 2 2 sin sin 2b b c b b cs t E T t f t E T t f t    

sI

–sQ

   
   

1

2

( ) 2 cos 2 cos 2 ,

( ) 2 sin 2 sin 2 , 0 2
b b c b b

b b c b

t T t T f t T t T

t T t T f t t T

  

  

   

  

Coherent detection
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Signal-Space Diagram of MSK (Cont.)
• The signal constellation for an MSK signal is two-dimensional

(i.e., N = 2), with four possible message points (i.e., M = 4)

• For the symbol transmitted                                                                  
in 0  t  Tb, we have 

• Moving in a counterclockwise                                                          
direction, the coordinates of                                                       
the message points are: 

1 

2    Z1Z2

Z3 Z4

 
 
 
 

, :Symbol 0

, :Symbol 1

, :Symbol 0

, :Symbol 1

b b

b b

b b

b b

E E

E E

E E

E E

 

 

 

 
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Signal-Space Diagram of MSK (Cont.)
• Each symbol corresponds to a binary symbol and each symbol 

shows up in two opposite quadrants 

Symbol (0) (Tb) s1 (sI) s2 (–sQ)
0 0 – /2
1  – /2
0  + /2
1 0 + /2

bE

bE

bE
bE

bE

bE

bE

bE

Symbol (Tb) (2Tb) s1 (sI) s2 (–sQ)
0 + /2 0
1 – /2 0
0 – /2 
1 + /2 

bE

bE

bE

bE
bE

bE
bE

bE

0  t  Tb

Tb  t  2Tb

Different mapping

sI: “+” (0Tb) = 0
“–” (0Tb) = 

sQ: “+” (Tb) = /2
“–” (Tb) = –/2  

sQ: “+” (Tb) = /2
“–” (Tb) = –/2   

sI: “+” (2Tb) = 0
“–” (2Tb) = 



Prof. Tsai 43

Minimum Shift-Keying (Cont.)
• Symbol within 0  t  Tb

Symbol (0) (Tb) s1 s2

0 0 – /2
1  – /2
0  + /2
1 0 + /2

bE

bE

bE
bE

bE

bE

bE

bE



/2

–

–/2

0 t
0–2Tb 2Tb 4Tb 6Tb 8Tb
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Minimum Shift-Keying (Cont.)
• Symbol within Tb  t  2Tb

Symbol (Tb) (2Tb) s1 s2

0 + /2 0
1 – /2 0
0 – /2 
1 + /2 

bE

bE

bE

bE
bE

bE
bE

bE



/2

–

–/2

0 t
0–2Tb 2Tb 4Tb 6Tb 8Tb
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MSK Waveforms
• The two modulation frequencies are f1 = 5/4Tb and f2 = 3/4Tb

and (0) is zero at time t = 0 

sI(t)

–sQ(t)

s(t)

1 1 0 1 0 0 0

0              0

/2 /2 /2 –/2
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Error Probability of MSK
• In the case of an AWGN channel, the received signal is given 

by x(t) = s(t) + w(t)

– where s(t) is the transmitted MSK signal and w(t) is the 
white Gaussian noise with zero mean and power spectral 
density N0/2   

• To decide whether symbol 1 or symbol 0 was sent in 0  t  Tb, 
we establish a procedure for the use of x(t) to detect the phase 
states (0) and (Tb)

– sI(t): If x1 > 0,               ; if x1 < 0,               

– sQ(t): If x2 > 0,                       ; if x2 < 0,               

2

1 1 1 1 2 2 2 20
( ) ( ) ; ( ) ( )

b b

b

T T

T
x x t t dt s w x x t t dt s w 


      

ˆ(0) 0  ˆ(0) 
ˆ( ) 2bT   ˆ( ) 2bT 
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Error Probability of MSK (Cont.)
• If estimates               and                      , or alternatively if           

and                    , then the receiver decides in favor of symbol 0

• If                  and                       , or alternatively if                     
and                      then the receiver decides in favor of symbol 1

• The receiver makes an error when the I-channel assigns the 
wrong value to (0) (for symbol Tb  t  2Tb) or the Q-channel 
assigns the wrong value to (Tb) (for symbol 0  t  Tb) 

• It follows, therefore, that the BER for the coherent detection of 
MSK signals is given by

– which is exactly the same as that for BPSK and QPSK

• This good performance is the result of coherent detection 
being performed on the basis of observations over 2Tb interval 

ˆ(0) 0  ˆ(0) ˆ( ) 2bT  
ˆ( ) 2bT 

ˆ(0)  ˆ( ) 2bT   ˆ(0) 0 
ˆ( ) 2bT 

 0

1
erfc

2e bP E N
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Non-coherent Detection of MSK Signals
• The data information is not relied on the absolute signal phase

– It relies on the phase transition between two successive 
received symbols

– Non-coherent data detection of MSK signals is possible

• Similar to the detection approach for /4-DQPSK signals 

– The receiver need to detect the phase states (0) and (Tb)

– It computes the projections of a noisy signal x(t) onto the 
original basis functions 1(t) and 2(t) to extract the phase

– Then, it applies a differential detector to determine the 
phase transition between two successive received symbols

• In comparison with coherent detection, error performance is 
degraded because of no carrier phase is available
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Power Spectra of MSK Signals
• We assume that the input binary wave is random, with symbols 

1 and 0 being equally likely and the symbols sent during 
adjacent time slots being statistically independent

• Depending on the value of phase state (0), the in-phase
component equals +g(t) or –g(t), where the pulse-shaping 
function

• The power spectral density of the in-phase component equals

 2 cos 2 ,
( )

0, otherwise
b b b b bE T t T T t T

g t
    



2

2 2 2

16 cos(2 )
( )

16 1
b b

g
b

E T f
S f

T f




 
   
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Power Spectra of MSK Signals (Cont.)
• Depending on the value of the phase state (Tb), the 

quadrature component equals +g(t) or –g(t), where

• The PSD is the same as that of the in-phase component 

• The in-phase and quadrature components of the MSK signal are 
statistically independent

• The baseband power spectral density of s(t) is given by 

• The baseband power spectral density of the MSK signal falls 
off as the inverse fourth power of frequency for f >> 0

 2 sin 2 , 0 2
( )

0, otherwise
b b b bE T t T t T

g t
   



2

2 2 2

32 cos(2 )
( ) 2 ( )

16 1
b b

B g
b

E T f
S f S f

T f




 
    

h = ½  Different to 
CPBFSK with h = 1
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Power Spectra of MSK Signals (Cont.)
• The QPSK signal it falls off as the inverse square of frequency

• MSK does not
produce as much                                                                                   
interference                                                                         
outside the signal                                                                                  
band of interest                                                                              
as QPSK does

9.54 dB
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Gaussian-Filtered MSK (GMSK)
• Some desirable properties of MSK:

– Modulated signal with constant envelope

– Relatively narrow-bandwidth occupancy 

– Coherent detection performance equivalent to that of QPSK

• However, the out-of-band spectral characteristics of MSK 
signals may not satisfy some stringent requirements

– At fTb = 0.5, the baseband PSD of the MSK signal drops by 
only 10 log109 = 9.54 dB below its midband value

– If the transmission bandwidth is set as 1/Tb (fc  1/Tb), the 
adjacent channel interference of using MSK is not low 
enough to satisfy the practical requirements of a wireless 
multiuser-communications environment  
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Gaussian-Filtered MSK (GMSK) (Cont.)
• We may modify the power spectrum of MSK into a more 

compact form while maintaining the constant-envelope property 

• This modification can be achieved through the use of a pre-
modulation low-pass filter, 

– A baseband pulse-shaping filter

• The pulse-shaping filter should satisfy the following conditions:

– Frequency response with narrow bandwidth and sharp 
cutoff characteristics 

– Impulse response with relatively low overshoot 

– The carrier phase of the modulated signal assuming the two 
values  /2 at odd multiples of Tb and the two values 0 and 
 at even multiples of Tb as in MSK
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Gaussian-Filtered MSK (GMSK) (Cont.)
• These three conditions can be satisfied by using a baseband 

pulse-shaping filter whose impulse response (and, likewise, its 
frequency response) is defined by a Gaussian function

• The resulting method of binary FM is naturally referred to as 
Gaussian-filtered minimum-shift keying (GMSK)

• The transfer function H( f ) and impulse response h(t) of the 
pulse-shaping filter

– where W is the 3 dB baseband bandwidth of the filter  

• The response of this Gaussian filter to a rectangular pulse of 
unit amplitude and duration Tb is 

2 2
2 2ln 2 2 2

( ) exp ; ( ) exp
2 ln 2 ln 2

f
H f h t W W t

W

            
     

2

2
( ) ( )

b

b

T

T
g t h t d 


 
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Gaussian-Filtered MSK (GMSK) (Cont.)
• g(t) is noncausal and, therefore, not physically realizable

• For a causal response, g(t) must be truncated and shifted in 
time

• As WTb is reduced,                                                                    
the time spread of the                                                                      
frequency-shaping                                                                         
pulse is increased

• Inter-symbol                                                                            
interference (ISI) is                                                               
introduced 

Truncated at t = 2.5Tb

Shifted in time by 2.5Tb

Tb

ISI ISI
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Gaussian-Filtered MSK (GMSK) (Cont.)
• The power spectra of MSK and GMSK signals 

• The condition of WTb = 
corresponds to the case of                                                             
the ordinary MSK
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Gaussian-Filtered MSK (GMSK) (Cont.)
• The introduced Inter-symbol interference (ISI) degrades the 

symbol error performance at the receiver

• The time–bandwidth                                                          
product WTb offers a                                                         
tradeoff between                                                                  
spectral compactness                                                                         
and performance loss

• The average symbol                                                                             
error rate is 

–  = 2: no degradation

– WTb = 0.3   = 1.8

 0

1
erfc 2

2e bP E N
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M-ary FSK
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M-ary FSK
• For M-ary FSK, the transmitted signals are defined by

– where i = 1, 2, , M; the carrier frequency: fc = nc/(2T) for 
some fixed integer nc; the symbol duration: T; the symbol 
energy E

• Since the individual signal frequencies are separated by 1/(2T) 
Hz, the M-ary FSK signals constitute an orthogonal set; that is,

• A complete orthonormal set of basis functions, as shown by

 2
( ) cos , 0i c

E
s t n i t t T

T T

      

0
( ) ( ) 0,

T

i js t s t dt i j 

1
( ) ( ), 0 , 1, 2, ,i it s t t T i M

E
     
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Error Probability of M-ary FSK
• For the coherent detection of M-ary FSK, the optimum receiver 

consists of a bank of M correlators or matched filters

• At the sampling times t = kT, the receiver makes decisions 
based on the largest matched filter output 

– The maximum likelihood decoding rule  

• An exact formula for the probability of                                        
symbol error is difficult

• Since the minimum distance in M-ary
FSK is          , an upper bound on the                                            
average probability of symbol error 

 
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1
1 erfc

2 2e
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Power Spectra of M-ary FSK Signals
• The spectral analysis of M-ary FSK signals is complicated

• A special case of assigning uniformly spacing frequencies to 
the multi-levels with the frequency deviation h = 1/2  

– CPFSK

– The M signal                                                                   
frequencies are                                                                     
separated by 1/2T,                                                                          
where T is the                                                                 
symbol duration

• The baseband power                                                                    
PSD of M-ary FSK                                                                    
signals for M = 2, 4, 8
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Bandwidth Efficiency of M-ary FSK
• For coherent detection, the adjacent signals of M-ary FSK 

need only be separated from each other by a difference 1/2T

• The channel bandwidth required to transmit M-ary FSK 
signals is  B  M / 2T

– The symbol period is equal to T = Tb log2M

– The bit rate is equal to Rb = 1/Tb

• Hence, we may redefine the channel                                      
bandwidth for M-ary FSK

• The bandwidth efficiency of M-ary FSK                                           
signals is therefore

22 logbB R M M

22 logbR M

B M
  

f

M = 2: T = Tb

f

M = 8: T = 3Tb

1/2Tb

1/6Tb

B

B
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Bandwidth Efficiency of M-ary FSK (Cont.)
• For M-ary FSK, the increase in the number of levels M tends 

to decrease the bandwidth efficiency

• By contrast, for M-ary PSK, the increase in the number of 
levels M tends to increase the bandwidth efficiency 

• In other words, M-ary PSK signals are spectrally efficient, 
whereas M-ary FSK signals are spectrally inefficient

M 2 4 8 16 32 64

 (bits/s/Hz) 0.5 1 1.5 2 2.5 3

M 2 4 8 16 32 64

 (bits/s/Hz) 1 1 0.75 0.5 0.3125 0.1875
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Discussion of Orthogonality
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Binary FSK – Orthogonality
• Considering binary FSK, the transmitted signals are  

– where i represents the carrier phase at the initial time  
• To maintain the orthogonality between s1(t) and s2(t)

• Assuming  fi >> 0, the first term can be ignored 
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Binary FSK – Orthogonality (Cont.)
• Continuous-phase binary FSK: 1 = 2  1 – 2 = 0

– Different symbol intervals may have different initial phases 

• Depending on the ending phase of the previous symbol

– If f1 – f2 = m/2Tb, for an integer m > 0

– The minimum value that makes s1(t), s2(t) = 0 is m = 1

– The minimum frequency spacing that maintains the 
orthogonality between s1(t) and s2(t) is f = 1/2Tb

• For continuous-phase FSK, the two sinusoidal carriers are said 
to be coherently orthogonal

– Because 1 = 2, the minimum freq. spacing is f = 1/2Tb

    
  

2
1 2 1 2 1 2 1 2 1 2

2

( ), ( ) sin 2 ( ) sin 4 ( )
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b
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s t s t A f f T f f

A T m m

     
 
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

Such as MSK
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Binary FSK – Orthogonality (Cont.)
• Non-continuous-phase binary FSK: 1  2  1 – 2 =   0

– If f1 – f2 = m/2Tb, for an integer m > 0

– The minimum value that makes s1(t), s2(t) = 0 is m = 2

– The minimum frequency spacing that maintains the 
orthogonality between s1(t) and s2(t) is f = 1/Tb

• For non-continuous-phase FSK, the two sinusoidal carriers are 
said to be noncoherently orthogonal

– Because there is no relationship between the two phases 

– The minimum frequency spacing is f = 1/Tb

– Which is twice as much as that of continuous-phase FSK

    
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Homework
• You must give detailed derivations or explanations, 

otherwise you get no points. 

• Communication Systems, Simon Haykin (4th Ed.)

• 6.20; 

• 6.22;

• 6.27;


