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Band-pass Digital Modulation
• In digital band-pass transmission (not baseband transmission), 

the incoming data stream is modulated onto a carrier

• The modulation process making the transmission possible 
involves switching (keying) the amplitude, frequency, or 
phase of a sinusoidal carrier

– Amplitude-shift keying (ASK)

– Phase-shift keying (PSK)

– Frequency-shift keying (FSK)
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Band-pass Digital Modulation

Binary ASK

Binary PSK

Binary FSK
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Coherent and Non-coherent
• Digital modulation techniques may be classified into coherent

and noncoherent techniques 

– Depending on whether a phase-recovery circuit (or a 
reference signal for carrier) is required at the receiver (for 
data detection) or not 

– The circuit ensures that the local carrier at the receiver is 
synchronized (in both frequency and phase) to the carrier 
used to modulate the incoming data at the transmitter
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M-ary Modulation
• In an M-ary modulation scheme, multiple bits are transmitted 

in a symbol

– n = log2 M bits/symbol 

• The signal are generated by changing the amplitude, phase, or 
frequency of a sinusoidal carrier in M discrete steps

• The M-ary signals can also be generated by combining 
different modulation methods into a hybrid form

– M-ary amplitude-phase keying (APK)

• A special form of M-ary APK is M-ary quadrature-amplitude 
modulation (QAM)
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Basic Assumptions
• For the original data sequence, we assume that

– The transmitted bit rate is Rb, fixed for different modulation

– The bit duration is fixed as Tb = 1/Rb

– The energy per bit is set as Eb

• In a binary modulation scheme with M = 2 

– The transmitted symbol rate is R = Rb

– The symbol duration is T = Tb

– The energy per symbol is E = Eb

• In an M-ary modulation scheme with n = log2 M bits/symbol 

– The transmitted symbol rate is R = Rb/n

– The symbol duration is T = n  Tb

– The energy per symbol is E = n  Eb
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Band-pass Transmission Model

Prof. Tsai 10

Band-pass Transmission Model
• A message source emits one symbol every T seconds, with the 

symbols belonging to an alphabet of M symbols: m1, m2, ... , mM

• The a priori probabilities p1, p2, ... , pM specify the message 
source output

– If the M symbols of the alphabet are equally likely
( ) 1 for 1, 2, ,i ip P m M i M   

x(t)

Message
source

Signal
encoder

si(t)mi
Modulator Communication

channel
si

Detector/
Demodulator

Signal
decoder

Transmitter ~

Receiver
xEstimate

m̂



Prof. Tsai 11

Band-pass Transmission Model (Cont.)
• The signal encoder produces a corresponding signal vector si

made up of N (the signal space dimension) real elements

• The modulator constructs a distinct signal si(t) of duration T

– The signal si(t) is a real-valued energy signal

• The communication channel is assumed                                    
to have the two characteristics:
– The channel is linear, with an enough bandwidth
– The channel noise w(t) is AWGN with power                           

spectral density N0/2
• The channel only attenuates the signal and adds noise

– No distortion

2

0
( )

T

i iE s t dt 

( ) ( ) ( ), 0ix t s t w t t T   

Received
Signal

x(t)


Band-pass
Signal

si(t)

White
Gaussian

Noise
w(t)

+

+Channel
Ac

Prof. Tsai

Band-pass Signal Representation
• A band-pass signal g(t) can be represented as its equivalent 

complex envelope

– The carrier component contains no information about g(t) 

• Thus, we can represent g(t) as its low-pass in-phase and 
quadrature components

– In-phase component: gI(t)

– Quadrature component: gQ(t)
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Band-pass Signal Representation – Tx
• At the transmitter, the band-pass signal g(t) can be generated by 

using its low-pass in-phase and quadrature components 

– In-phase: gI(t) used to modulate the carrier cos(2fct)

– Quadrature: gQ(t) used to modulate the carrier sin(2fct) 
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Band-pass Signal Representation – Rx
• A receiver includes a band-pass filter at the front end

– The bandwidth must be just large enough to pass the 
transmitted signal, but not to admit excessive noise 

– That is, set the filter bandwidth to the signal bandwidth B

– The white noise is converted to narrowband noise n(t) 

• The narrowband noise n(t) can also be represented as its 
equivalent complex envelope ñ(t)
– In-phase component: nI(t)
– Quadrature component: nQ(t)
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Band-pass Signal Representation – Rx (Cont.)
• The signal is down-converted by the local orthogonal carriers 

cos(2fct) and sin(2fct) 

• After passing a low-pass filter, the signals used for detection 
are  1 1

2 2( ) ( ) ; ( ) ( )c I I c Q QA g t n t A g t n t   
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White Noise
• White noise:

– An idealized form of noise

– The power spectral density is independent of the operating 
frequency

• The power spectral density of white noise is
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Narrowband Noise
• The narrowband noise is equivalent to a low-pass filtered

white noise multiplied by a sinusoidal wave 

• Considering the narrowband noise n(t) of bandwidth B
centered on fc, it can be decomposed into two components
– The two orthogonal bases: cos(2fct) and sin(2fct)

– The in-phase component: nI(t) (low-pass signal)

– The quadrature component: nQ(t) (low-pass signal)

f
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Narrowband Noise (Cont.)
• Since n(t) have zero mean, both nI(t) and nQ(t) have zero mean
• If n(t) is Gaussian, nI(t) and nQ(t) are jointly Gaussian

– The properties of Gaussian process
• If n(t) is stationary, nI(t) and nQ(t) are jointly stationary
• nI(t) and nQ(t) have the same power spectral density
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Narrowband Noise (Cont.)
• Both nI(t) and nQ(t) have the same variance as n(t) 

• The cross-spectral density is purely imaginary

• If n(t) is Gaussian and its power spectral density SN( f ) is 
symmetric about fc, nI(t) and nQ(t) are statistically 
independent

– Since SN( f ) is symmetric about fc, we have
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Pulse-Shaping Filter
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Pulse-Shaping
• In the modulator, the signal characteristics depend on the 

output signal waveform of si(t) 

• Pulse shaping is the process of changing the pulse waveform 
of the output signal for transmission

– Make the signal possessing the desired characteristics and 
suitable for the communication channels

– For example: to reduce signal bandwidth, to eliminate inter-
symbol interference (ISI), to enhance the transmission 
efficiency, etc. 

• In general, there are two important requirements for the pulse-
shaping filter used in wireless communications systems

– Bandwidth limitation and ISI elimination

Prof. Tsai 22

Pulse-Shaping Filter
• There are different types of pulse-shaping filter:

– Rectangular shaped filter 

– Sinc shaped filter 

– Raised-cosine filter

– Gaussian filter

• Rectangular shaped filter: generate a signal with a rectangular 
pulse waveform during the symbol duration

– No ISI is introduced in the transmitted signal

– Infinite channel bandwidth is required

time
T/2–T/2

frequency
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Pulse-Shaping Filter (Cont.)
• Sinc shaped filter: generate a signal with a strictly limited 

signal bandwidth

– Time overlapping (ISI) is introduced

– Finite channel bandwidth is required

• Raised-cosine filter: generate a signal with a raised cosine 
spectrum 

– Restrict the signal duration in the time domain

– Restrict the signal bandwidth in the frequency domain

– ISI is introduced
 = 0
 = 0.5
 = 1

f/W21.510.50-0.5-1-1.5-2

1.0Flat portion

Rolloff portion
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Pulse-Shaping Filter (Cont.)
• Gaussian filter: generate a signal with a Gaussian-like signal 

shape

– Restrict the signal duration in the time domain

– Restrict the signal bandwidth in the frequency domain

– ISI is introduced
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Coherent Phase-Shift Keying

Prof. Tsai

Binary Phase-Shift Keying
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Binary Phase-Shift Keying
• In coherent binary PSK, the pair of signals s1(t) and s2(t) used to 

represent binary symbols 1 and 0 is defined by

– where 0  t < Tb, and Eb is the signal energy per bit

– The carrier frequency fc is chosen equal to nc/Tb for some 
fixed integer nc (Each symbol contains an integral number 
of cycles of the carrier: to maintain I-Q orthogonality)

– Antipodal signals: a pair of sinusoidal waves that differ 
only in a relative phase-shift of 180

• There is only one basis function of unit energy 
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Binary Phase-Shift Keying (Cont.)
• The pair of signals s1(t) and s2(t) can be expressed as follows:

– The dimension of the signal space is N = 1  

• The coordinates of the message points are
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Error Probability of Binary PSK
• Based on the ML decision rule, the decision regions are

– Z1: The set of points closest to message point 1 

– Z2: The set of points closest to message point 2 
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Error Probability of Binary PSK (Cont.)
• The decision random variable X1 is the correlation of the 

received signal x(t) and the basis function 1(t) 

• Because nI(t) is a zero-mean Gaussian process with a PSD N0

for – B/2  f  B/2

– X1 is a Gaussian distributed random variable

• Mean:   = si1

• Variance: 

– The power of nI(t) is N0B and B = 1/Tb
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Error Probability of Binary PSK (Cont.)
• The conditional pdf of random variable X1, given that symbol 1

was transmitted, is defined by

• The conditional pdf of random variable X1, given that symbol 0
was transmitted, is defined by
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Error Probability of Binary PSK (Cont.)
• The conditional probability of the receiver deciding in favor of 

symbol 0, given that symbol 1 was transmitted, is 

   1

20 0

01 1 1 1 1
00

1 1
1 expX bp f x dx x E dx

NN 

 
    

 
 

fX1(x1|1)

x1

PDF of X1 when ‘1’ is transmitted

0

p01

bE



Prof. Tsai 33

Error Probability of Binary PSK (Cont.)
• The conditional probability of the receiver deciding in favor of 

symbol 1, given that symbol 0 was transmitted, is 
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Error Probability of Binary PSK (Cont.)
• Putting                                     and changing the variable of 

integration to z, we have

– where erfc() is the complementary error function

• Similarly, the conditional probability p10 of the receiver 
deciding in favor of symbol 1, given that symbol 0 was 
transmitted, has the same value as p01

• Assuming p1 = p0, the average probability of symbol error or, 
equivalently, the bit error rate for coherent binary PSK is 
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Error Probability of Binary PSK (Cont.)
• Complementary error function:

• For large positive values of u, we have an upper bound
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Generation of Binary PSK Signals
• The signal transmission encoding is performed by a polar 

nonreturn-to-zero (NRZ) level encoder

• The resulting binary wave and a sinusoidal carrier 1(t) are 
applied to a product modulator to produce the binary PSK 
signal 

The oscillator phase 
is set as 0
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Polar NRZ
• Polar nonreturn-to-zero (NRZ) signaling:

– Symbol 1: a pulse of amplitude A for the duration of the 
symbol

– Symbol 0: a pulse of amplitude –A for the duration of the 
symbol

A

0

Tb

Polar
NRZ

Binary data 0           1           1           0           1           0           0           1
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Detection of Binary PSK Signals
• The received noisy PSK signal x(t) is applied to a correlator

– which is supplied with a locally generated coherent
reference signal 1(t) (Coherent detection is necessary)

• The output x1 is compared with a threshold of zero volts
– If x1 > 0, the receiver decides in favor of symbol 1 (s1(t))
– If x1 < 0, the receiver decides in favor of symbol 0 (s2(t))
– If x1 = 0, the receiver makes a random guess

Correlator

1( ) 2 cos(2 )b ct T f t 
Coherent to x(t)
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Power Spectra of Binary PSK Signals
• The complex envelope of a binary PSK signal only consists of 

an in-phase component
– Symbol 1: + g(t)
– Symbol 0: – g(t) 

• The symbol shaping function: 

• The energy spectral density                                                         
is the squared magnitude of                                                         
the signal’s Fourier transform
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QuadriPhase-Shift Keying (QPSK)
Quadrature Phase-Shift Keying
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QuadriPhase-Shift Keying (QPSK)
• Quadriphase-Shift Keying is used to improve bandwidth 

efficiency  an example of quadrature-carrier multiplexing

• The two orthonormal basis functions are

• In QPSK, the phase of the carrier takes on one of four equally 
spaced values, such as /4, 3/4, 5/4, and 7/4

1 2( ) 2 cos(2 ); ( ) 2 sin(2 )c ct T f t t T f t    

1(t)

2(t)
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Signal Space of QPSK
• The transmitted signal is defined as

– E = 2Eb is the symbol energy; T = 2Tb is the symbol duration

• Based on

The two basis functions      The signal vectors are
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Signal Space of QPSK (Cont.)
• Gray-encoding is used

– Only one bit is changed from one dibit to the next

1(t)
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Signal Space of QPSK (Cont.)

• According to the two basis functions, the complex plane is 
divided into four decision regions 
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Example 1: QPSK
• A QPSK signal can be regarded as two orthogonal BPSK signals
Input
binary

sequence

0 1

Dibit 01

1 0

Dibit 10

1 0

Dibit 10

0 0

Dibit 00

BPSK

BPSK

QPSK
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Error Probability of QPSK
• The observation vector x of QPSK has two elements

• Based on the ML decision rule, the decision regions are 

• A coherent QPSK system is equivalent to two coherent BPSK 
systems  x1 and x2 can be viewed as independent outputs

• The equivalent coherent BPSK systems are characterized as

– The signal energy per bit is E/2

– The noise variance is N0/2
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Error Probability of QPSK (Cont.)
• According to the average bit error probability of coherent 

BPSK, the average probability of bit error in each channel is

• The average probability of a correct decision of a symbol is

• The average probability of symbol error for coherent QPSK is

• In the region where E/2N0 >> 1, we can ignore the quadratic 
term

   0 0

1 1
erfc 2 erfc 2

2 2
P E N E N  

   2 2
0 0

1
(1 ) 1 erfc 2 erfc 2

4cP P E N E N    

   2
0 0

1
1 erfc 2 erfc 2

4e cP P E N E N   

 0erfc 2eP E N
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Error Probability of QPSK (Union Bound)
• Another approach (union bound) of deriving the average 

probability of symbol error for coherent QPSK 

– The sum of all pairwise error probabilities

– The error regions may be overlapped

– It is an upper bound

• For the signal point si(t)  

– where dik is the distance between                                             
the two signal points si(t) and sk(t)

 4

01,

1
erfc 2 , for 

2e ikk k i
P d N i

 
 

s1(t)
10

s2(t)
00

01
s3(t)

11
s4(t)

d12

d13 d14
1(t)

–2(t)

I

Q
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Bit Error Probability of QPSK
• If we consider only the set of nearest message points, a tighter 

approximated symbol error probability can be obtained

• Consider only the two nearest message points with the distances

• The average probability of symbol error becomes

• Based on Gray encoding and the fact that E = 2Eb, the bit error 
rate of QPSK is

   0 0

1 1 1
erfc 2 erfc

2 2 2e bBER P E N E N 

12 14 2 , for message point 1d d E 

   0 0

1
2 erfc 2 erfc 2

2eP E N E N 

 0

1
erfc

2e bP E NBER of coherent BPSK:
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Generation of QPSK Signals
• The binary data sequence is transformed into the polar form

– NRZ with symbols 1 and 0 represented by +Eb and –Eb

• The binary wave is divided by a demultiplexer into two 
separate binary waves (odd- and even-numbered input bits)

odd

even
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Detection of QPSK Signals
• The received noisy QPSK signal x(t) is applied to a pair of 

correlators (local coherent reference signal 1(t) and 2(t))

• The outputs x1 and x2 are compared with a zero-volt threshold
– If x1 > 0 (x2 > 0)  symbol 1
– If x1 < 0 (x2 < 0)  symbol 0
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Power Spectra of QPSK Signals
• The complex envelope of a QPSK signal consists of in-phase

and quadrature components, both are equal to  

– Symbol 1: + g(t)

– Symbol 0: – g(t) 

• The symbol shaping function: 

• The energy spectral density is

, 0
( )

0, otherwise

E T t T
g t

   


2

2
( ) 2 sinc ( )

4 sinc (2 )
B

b b

S f E Tf
E T f




T = 2Tb

2
For BPSK

( ) 2 sinc ( )B b bS f E T f



Prof. Tsai

Offset QPSK
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Phase Shift in QPSK Signals
• For ordinary QPSK, we have the following observations:

– The carrier phase changes by  180 whenever both the in-
phase and quadrature components change sign

– The carrier phase changes by  90 whenever the in-phase 
or quadrature component changes sign

– The carrier phase is unchanged when neither the in-phase 
nor quadrature components changes sign

s1(t)s2(t)

s3(t) s4(t)

I

Q
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Phase Shift in QPSK Signals (Cont.)
• The 180 and 90 phase shift result in changes in the carrier 

amplitude at the transmitter

– The carrier amplitude is the distance between the signal 
point and the origin

– Signal will be distorted because of linearity limitation of 
the power amplifier 

– Thereby causing additional symbol errors on detection

s1(t)s2(t)

s3(t) s4(t)

Amplitude
I

Q
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Offset QPSK (OQPSK)
• The OQPSK signals can change the carrier phase by only  90

– The bit stream responsible for generating the quadrature
component is delayed by half a symbol interval

• The phasor trajectory does not pass through the origin

• The two basis functions of offset QPSK are defined by

• The bit error rate in the in-phase or quadrature channel of a 
coherent QPSK system is still equal to 

– The same as that of the conventional QPSK systems

1

2

( ) 2 cos(2 ), 0

( ) 2 sin(2 ), 2 3 2
c
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t T f t t T
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 
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Offset QPSK (OQPSK) (Cont.)

I

Q

(0, 0)

(1, 1)(0, 1)

(1, 0)

QPSK OQPSK

I

Q

(0, 0)

(1, 1)(0, 1)

(1, 0)
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Offset QPSK (OQPSK) (Cont.)

Data     10 00 11 00

QPSK

OQPSK
offset

10

11

00

01

Q

I

I

Q

Q
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M-ary PSK
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M-ary PSK
• In M-ary PSK, the carrier takes on one of M possible values

• The transmitted signal is defined as

• Each si(t) can be expressed by the two basis functions

– where the symbol duration T = Tb log2 M

• The signal-space diagram is circularly symmetric

• The average probability of symbol error for M-ary PSK can 
be derived based on the union bound

2( 1) , 1, 2, ,i i M i M    

( ) 2 cos(2 2( 1) ), 0i cs t E T f t i M t T     

1 2( ) 2 cos(2 ); ( ) 2 sin(2 )c ct T f t t T f t    

 01,

1
erfc 2

2

M

e ikk k i
P d N

 
 

No. of bits
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M-ary PSK (Cont.)
• M = 8

I (1(t))

Q (–2(t))
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M-ary PSK (Cont.)
• M = 8

I (1(t))

Q (–2(t))
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Error Probability of M-ary PSK
• Consider only the two nearest message points with the distances

• The average probability of symbol error becomes

– where it is assumed that M  4

12 1 2 sin( ), for message point 1Md d E M 

0

erfc sin( )e

E
P M

N


 
  
 


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Power Spectra of M-ary PSK Signals
• The symbol duration of M-ary PSK is defined by T = Tb log2 M

• The energy spectral density is

0.33

2

2
2 2

( ) 2 sinc ( )
2 log sinc ( log )

B

b b

S f E Tf
E M T f M



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Bandwidth Efficiency of M-ary PSK Signals
• The channel bandwidth required to pass M-ary PSK signals 

(the main spectral lobe of M-ary PSK signals) is given by 

• Since Rb = 1/Tb and T = Tb log2 M, we may rewrite the channel 
bandwidth as

• The bandwidth efficiency is given by

• When M is increased, the bandwidth efficiency is improved at 
the cost of degradation in the error performance

2B T

22 logbB R M

2log

2
bR M

B
  

M 2 4 8 16 32 64

 (bits/s/Hz) 0.5 1 1.5 2 2.5 3

Bandwidth over the channel
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Non-coherent Phase-Shift Keying
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Non-coherent Phase-Shift Keying
• In some communication channels, the phase of the channel

cannot be determined easily

– For example, the wireless communication channels 

• How to obtain the phase information for coherent detection?

– The transmitter may deliver a reference signal (with fixed 
carrier phase known to the receiver) for the receiver to 
acquire the phase information of the channel

• This approach does not always work well  

– It degrades the bandwidth efficiency

– The phase of the channel may change rapidly

• If the phase information of the channel cannot be obtained

– Use non-coherent modulation scheme

Channel

Channel Phase: 
  


 


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/4-Differential QPSK
• An ordinary QPSK signal may reside in either one of the two 

commonly used constellations

– which are shifted by /4 radians with respect to each other 

• A /4-Differential QPSK signal uses the two constellations 
alternately in two successive symbols

• The signal may reside in any one of eight possible phase states
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/4-Differential QPSK (Cont.)
• Attractive features of /4-Differential QPSK includes:

– The phase transitions between the signals of two 
successive symbols are restricted to  /4 and  3/4 radians 
 Less sensitive to the nonlinearity of the power amplifier

– /4-Differential QPSK can be noncoherently detected

• The generation of /4-Differential QPSK symbols follows the 
pair of relationships:

1 1cos( ) cos ; sin( ) sink k k k k k k kI Q             

Gray-encoded Input Dibit Phase Change,  (radians)

00 /4
01 3/4
11 – 3/4
10 – /4
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/4-Differential QPSK (Cont.)
• There will certainly have a phase transition between the 

signals of two successive symbols

• The data (dibit) mapped to a specific signal point is not fixed

I

Q

(k-1)th symbol

I

Q

kth symbol

+1

–1

+3

–3

k-1

+3

–3

–1+1

k-1
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/4-Differential QPSK (Cont.)
• The phasor trajectory does not pass through the origin

I

Q

(0, 0)(1, 1)

(0, 1)

(1, 0)

QPSK /4-DQPSK

I

Q
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Example 2
• The input binary sequence is   0 0 1 0 1 0 0 1

• Suppose that the initial carrier phase is 0 = /4 

Phase k-1Step k Phase Change kInput Dibit Transmitted Phase k

/41 /400 /2

/22 – /410 /4

/43 – /410 0

04 3/401 3/4
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Detection of /4-DQPSK Signals
• The data information is not relied on the absolute signal phase

– It relies on the relative phase change between two 
successive received symbols

– No carrier phase information is required for data detection

• Another advantage of /4-DQPSK modulation is that symbol 
interval synchronization is easier than conventional QPSK

– There will certainly have a phase transition between the 
signals of two successive symbols

• The receiver first computes the projections of a noisy /4-
DQPSK signal x(t) onto the basis functions 1(t) and 2(t) 

– To extract the received signal phase
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Detection of /4-DQPSK Signals (Cont.)
• The resulting outputs, denoted by I and Q, are applied to a 

differential detector that consists of 

– Arctangent computer: extracting the phase of angle 
– Phase-difference computer: determining the change in the 

phase  occurring over one symbol interval

– Modulo-2 correction logic: correcting errors due to the 
possibility of phase angles wrapping around the real axis

• To restrict the phase difference within (– , + )

k

k–1
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Detection of /4-DQPSK Signals (Cont.)
• Let k denote the computed phase difference between k and 

k–1 for the channel outputs of symbol k and k – 1 

• The modulo-2 correction logic operates as follows:

• The phase transitions are                                              
restricted to  /4 and  3/4

 –180  k  +180
• If k = + 70, the                                                                     

detection result is + /4 

 The decoded dibit: “00” 

If 180 Then 360
If 180 Then 360

k k k

k k k

  
  

        
       

1

60 350
290
70

k k k     
  
  
  
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/2-Differential BPSK
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/2-Differential BPSK
• A /2-Differential BPSK signal uses two constellations 

alternately in two successive symbols

– which are shifted by /2 radians with respect to each other 

I

Q

(k-1)th symbol

I

Q

kth symbol

+1

–1

k-1

+1

k-1

–1
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/2-Differential BPSK
• /2-DBPSK with appropriate filtering can be used to 

approximate a precoded Gaussian Minimum-Shift Keying 
(GMSK)

– which is a constant-envelope modulation

• GMSK will be introduced in other chapter
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Homework
• You must give detailed derivations or explanations, 

otherwise you get no points. 

• Communication Systems, Simon Haykin (4th Ed.)

• 6.2; 

• 6.5; 

• 6.6;

• 6.10; 


