通訊系統 (II)

國立清華大學電機系暨通訊工程研究所 蔡育仁 台達館821室

Tel: 62210

E-mail: yrtsai@ee.nthu.edu.tw

Prof. Tsai

Chapter 2 Phase-Shift Keying Modulation

Introduction

Prof. Tsai

Band-pass Digital Modulation

- In **digital band-pass transmission** (not baseband transmission), the incoming data stream is modulated onto a **carrier**
- The modulation process making the transmission possible involves switching (keying) the **amplitude**, **frequency**, or **phase** of a sinusoidal carrier
 - Amplitude-shift keying (ASK)
 - Phase-shift keying (PSK)
 - Frequency-shift keying (FSK)

Band-pass Digital Modulation

Prof. Tsai

Coherent and Non-coherent

- Digital modulation techniques may be classified into coherent and noncoherent techniques
 - Depending on whether a phase-recovery circuit (or a reference signal for carrier) is required at the receiver (for data detection) or not
 - The circuit ensures that the local carrier at the receiver is synchronized (in both frequency and phase) to the carrier used to modulate the incoming data at the transmitter

M-ary Modulation

- In an *M*-ary modulation scheme, multiple bits are transmitted in a symbol
 - $-n = \log_2 M$ bits/symbol
- The signal are generated by changing the amplitude, phase, or frequency of a sinusoidal carrier in *M* discrete steps
- The *M*-ary signals can also be generated by combining **different** modulation methods into a **hybrid form**
 - *M*-ary **amplitude-phase** keying (APK)
- A special form of M-ary APK is M-ary quadrature-amplitude modulation (QAM)

Prof. Tsai

Basic Assumptions

- For the original data sequence, we assume that
 - The transmitted bit rate is R_b , fixed for different modulation
 - The **bit duration** is fixed as $T_b = 1/R_b$
 - The energy per bit is set as E_b
- In a binary modulation scheme with M = 2
 - The transmitted **symbol rate** is $R = R_b$
 - The **symbol duration** is $T = T_b$
 - The energy per symbol is $E = E_b$
- In an M-ary modulation scheme with $n = \log_2 M$ bits/symbol
 - The transmitted **symbol rate** is $R = R_b/n$
 - The **symbol duration** is $T = n \times T_b$
 - The energy per symbol is $E = n \times E_b$

Band-pass Transmission Model

Prof. Tsai

Band-pass Transmission Model

- A message source emits one symbol every T seconds, with the symbols belonging to an alphabet of M symbols: m_1, m_2, \dots, m_M
- The *a priori* probabilities p_1, p_2, \dots, p_M specify the message source output
 - If the M symbols of the alphabet are equally likely

Band-pass Transmission Model (Cont.)

- The signal encoder produces a corresponding signal vector s_i made up of N (the signal space **dimension**) real elements
- The **modulator** constructs a distinct signal $s_i(t)$ of duration T
 - The signal $s_i(t)$ is a **real-valued energy signal**

$$E_i = \int_0^T s_i^2(t) dt$$
Band-pass Signal Signal

The communication channel is assumed

Signal Channel + $x(t)$

Noise

w(t)

- to have the two characteristics:
 - The channel is **linear**, with an enough bandwidth
 - The channel noise w(t) is AWGN with power spectral density $N_0/2$
- The channel only attenuates the signal and adds noise
 - $x(t) = \alpha s_i(t) + w(t), \quad 0 \le t \le T$ No distortion

Prof. Tsai 11

Band-pass Signal Representation

- A band-pass signal g(t) can be represented as its equivalent complex envelope $\tilde{g}(t)$
 - The carrier component contains **no information** about g(t) $g(t) = \Re \left[\tilde{g}(t) e^{j2\pi f_c t} \right] = \Re \left[\left(g_I(t) + j g_Q(t) \right) e^{j2\pi f_c t} \right]$

• Thus, we can represent
$$g(t)$$
 as its low-pass **in-phase** and

- quadrature components
 - In-phase component: g_I(t)
 Quadrature component: g_Q(t)

Band-pass Signal Representation – Tx

- At the transmitter, the band-pass signal g(t) can be generated by using its **low-pass in-phase** and **quadrature** components
 - In-phase: $g_I(t)$ used to modulate the carrier $\cos(2\pi f_c t)$
 - Quadrature: $g_O(t)$ used to modulate the carrier $\sin(2\pi f_c t)$

Prof. Tsai

Band-pass Signal Representation – Rx

- A receiver includes a **band-pass filter** at the front end
 - The bandwidth must be **just large enough** to pass the transmitted signal, but not to admit excessive noise
 - That is, set the filter bandwidth to the **signal bandwidth** B
 - The white noise is converted to **narrowband noise** n(t)
- The narrowband noise n(t) can also be represented as its equivalent **complex envelope** $\tilde{n}(t)$
 - In-phase component: $n_I(t)$
 - Quadrature component: $n_O(t)$

Band-pass Signal Representation – Rx (Cont.)

- The signal is down-converted by the local orthogonal carriers $cos(2\pi f_c t)$ and $sin(2\pi f_c t)$
- After passing a **low-pass filter**, the signals used for detection are $\frac{1}{2} [A_c g_I(t) + n_I(t)]; \frac{1}{2} [A_c g_O(t) + n_O(t)]$

Prof. Tsai

White Noise

White noise:

- An idealized form of noise
- The power spectral density is **independent** of the operating frequency
- The power spectral density of white noise is

$$S_{W}(f) = \frac{N_{0}}{2} \quad \text{(watts/Hz)}$$

$$R_{W}(\tau) = \frac{N_{0}}{2} \delta(\tau)$$

$$S_{W}(f) |_{N_{0}/2}$$

$$0$$

$$R_{W}(\tau) |_{N_{0}/2} |_{N_$$

Narrowband Noise

The narrowband noise is equivalent to a low-pass filtered white noise multiplied by a sinusoidal wave $\sqrt{2}\cos(2\pi f_c t)$

- Considering the **narrowband noise** n(t) of bandwidth Bcentered on f_c , it can be decomposed into two components
 - The two **orthogonal** bases: $\cos(2\pi f_c t)$ and $\sin(2\pi f_c t)$
 - The in-phase component: $n_t(t)$ (low-pass signal)
 - The quadrature component: $n_Q(t)$ (low-pass signal)

$$n(t) = n_I(t)\cos(2\pi f_c t) - n_Q(t)\sin(2\pi f_c t)$$

Prof. Tsai 17

Narrowband Noise (Cont.)

- Since n(t) have zero mean, both $n_I(t)$ and $n_Q(t)$ have **zero mean**
- If n(t) is Gaussian, $n_I(t)$ and $n_O(t)$ are **jointly Gaussian**
 - The properties of Gaussian process
- If n(t) is stationary, $n_I(t)$ and $n_O(t)$ are **jointly stationary**

$$n_I(t)$$
 and $n_Q(t)$ have the same power spectral density
$$S_{N_I}(f) = S_{N_Q}(f) = \begin{cases} S_N(f - f_c) + S_N(f + f_c), & -B/2 \le f \le B/2 \\ 0, & \text{otherwise} \end{cases}$$

Low-pass $n_I(t) = n(t) \times 2\cos(2\pi f_c t); \quad n_O(t) = n(t) \times (-2\sin(2\pi f_c t))$

Narrowband Noise (Cont.)

• Both $n_I(t)$ and $n_O(t)$ have **the same variance** as n(t)

$$N_0 B = (N_0/2) \times 2B$$

• The cross-spectral density is purely **imaginary**

$$S_{N_{I}N_{Q}}(f) = -S_{N_{Q}N_{I}}(f) = \begin{cases} j[S_{N}(f+f_{c}) - S_{N}(f-f_{c})], -B/2 \le f \le B/2 \\ 0, & \text{otherwise} \end{cases}$$

- If n(t) is Gaussian and its power spectral density $S_N(f)$ is **symmetric** about f_c , $n_I(t)$ and $n_Q(t)$ are **statistically** independent
 - Since $S_N(f)$ is symmetric about f_c , we have

$$S_{N_I N_Q}(f) = S_{N_Q N_I}(f) = j[S_N(f + f_c) - S_N(f - f_c)] = 0$$

Prof. Tsai

Pulse-Shaping Filter

Pulse-Shaping

- In the **modulator**, the signal characteristics depend on the output signal waveform of $s_i(t)$
- **Pulse shaping** is the process of changing the **pulse waveform** of the output signal for transmission
 - Make the signal possessing the desired characteristics and suitable for the communication channels
 - For example: to reduce signal bandwidth, to eliminate intersymbol interference (ISI), to enhance the transmission efficiency, etc.
- In general, there are two important requirements for the pulseshaping filter used in wireless communications systems
 - Bandwidth limitation and ISI elimination

Prof. Tsai

Pulse-Shaping Filter

- There are different types of pulse-shaping filter:
 - Rectangular shaped filter
 - Sinc shaped filter
 - Raised-cosine filter
 - Gaussian filter
- Rectangular shaped filter: generate a signal with a rectangular pulse waveform during the symbol duration
 - No ISI is introduced in the transmitted signal
 - Infinite channel bandwidth is required

Pulse-Shaping Filter (Cont.)

- Sinc shaped filter: generate a signal with a strictly limited signal bandwidth
 - Time overlapping (ISI) is introduced
 - Finite channel bandwidth is required
- Raised-cosine filter: generate a signal with a raised cosine spectrum
 - Restrict the signal duration in the time domain
 - Restrict the signal bandwidth in the frequency domain

ISI is introduced

Prof. Tsai

Pulse-Shaping Filter (Cont.)

- Gaussian filter: generate a signal with a Gaussian-like signal shape
 - Restrict the signal duration in the time domain
 - Restrict the signal bandwidth in the frequency domain

- **ISI** is introduced

Coherent Phase-Shift Keying

Prof. Tsai

Binary Phase-Shift Keying

Binary Phase-Shift Keying

• In coherent binary PSK, the pair of signals $s_1(t)$ and $s_2(t)$ used to represent binary symbols 1 and 0 is defined by

$$s_1(t) = \sqrt{2E_b/T_b} \cos(2\pi f_c t)$$

$$s_2(t) = \sqrt{2E_b/T_b} \cos(2\pi f_c t + \pi) = -\sqrt{2E_b/T_b} \cos(2\pi f_c t)$$

- where $0 \le t < T_b$, and E_b is the **signal energy per bit**
- The carrier frequency f_c is chosen equal to n_c/T_b for some **fixed integer** n_c (Each symbol contains an integral number of cycles of the carrier: **to maintain I-Q orthogonality**)
- Antipodal signals: a pair of sinusoidal waves that differ only in a relative phase-shift of 180°
- There is only **one basis function** of unit energy

$$\phi_1(t) = \sqrt{2/T_b} \cos(2\pi f_c t), \quad 0 \le t < T_b$$

Prof. Tsai

Binary Phase-Shift Keying (Cont.)

• The pair of signals $s_1(t)$ and $s_2(t)$ can be expressed as follows:

$$s_1(t) = \sqrt{E_b} \phi_1(t) = s_{11} \phi_1(t), \quad 0 \le t < T_b$$

$$s_2(t) = -\sqrt{E_b} \phi_1(t) = s_{21} \phi_1(t), \quad 0 \le t < T_b$$

- The **dimension** of the signal space is N = 1
- The coordinates of the message points are

$$s_{11} = \int_0^{T_b} s_1(t)\phi_1(t) dt = +\sqrt{E_b}$$

$$s_{21} = \int_0^{T_b} s_2(t)\phi_1(t) dt = -\sqrt{E_b}$$

Error Probability of Binary PSK

• Based on the ML decision rule, the decision regions are

$$Z_1: 0 < x_1 < \infty; Z_2: -\infty < x_1 < 0;$$
 where $x_1 = \int_0^{T_b} x(t)\phi_1(t) dt$

- $-Z_1$: The set of points closest to message point 1
- $-Z_2$: The set of points closest to message point 2

Prof. Tsai

Error Probability of Binary PSK (Cont.)

• The **decision random variable** X_1 is the correlation of the received signal x(t) and the **basis function** $\phi_1(t)$

$$X_{1} = \int_{0}^{T_{b}} x(t)\phi_{1}(t) dt = \int_{0}^{T_{b}} \left[s_{i}(t) + n(t) \right] \phi_{1}(t) dt$$

$$= s_{i1} + \int_{0}^{T_{b}} n(t)\phi_{1}(t) dt$$

$$= s_{i1} + \sqrt{1/2T_{b}} \int_{0}^{T_{b}} n_{I}(t) dt$$

$$= s_{i1} + \sqrt{1/2T_{b}} \int_{0}^{T_{b}} n_{I}(t) dt$$

$$n(t) = n_{I}(t) \cos(2\pi f_{c}t)$$

$$- n_{Q}(t) \sin(2\pi f_{c}t)$$

$$\phi_{1}(t) = \sqrt{2/T_{b}} \cos(2\pi f_{c}t)$$

- Because $n_I(t)$ is a **zero-mean** Gaussian process with a PSD N_0 for $-B/2 \le f \le B/2$
 - $-X_1$ is a **Gaussian distributed** random variable
 - Mean: $\mu = s_{i1}$
 - Variance: $\sigma^2 = 1/2T_b \times N_0 B \times T_b^2 = N_0/2$
 - The power of $n_I(t)$ is $N_0 B$ and $B = 1/T_b$

Error Probability of Binary PSK (Cont.)

• The conditional pdf of random variable X_1 , given that **symbol 1** was transmitted, is defined by

$$f_{X_1}(x_1|1) = \frac{1}{\sqrt{\pi N_0}} \exp\left[-\frac{1}{N_0}(x_1 - s_{11})^2\right]$$
$$= \frac{1}{\sqrt{\pi N_0}} \exp\left[-\frac{1}{N_0}(x_1 - \sqrt{E_b})^2\right]$$

• The conditional pdf of random variable X_1 , given that **symbol 0** was transmitted, is defined by

$$f_{X_1}(x_1|0) = \frac{1}{\sqrt{\pi N_0}} \exp\left[-\frac{1}{N_0} (x_1 - s_{21})^2\right]$$
$$= \frac{1}{\sqrt{\pi N_0}} \exp\left[-\frac{1}{N_0} (x_1 + \sqrt{E_b})^2\right]$$

Prof. Tsai

Error Probability of Binary PSK (Cont.)

• The conditional probability of the receiver deciding in favor of **symbol 0**, given that **symbol 1 was transmitted**, is

$$p_{01} = \int_{-\infty}^{0} f_{X_1}(x_1 | 1) dx_1 = \frac{1}{\sqrt{\pi N_0}} \int_{-\infty}^{0} \exp \left[-\frac{1}{N_0} (x_1 - \sqrt{E_b})^2 \right] dx_1$$

PDF of X_1 when '1' is transmitted

Error Probability of Binary PSK (Cont.)

 The conditional probability of the receiver deciding in favor of symbol 1, given that symbol 0 was transmitted, is

$$p_{10} = \int_0^\infty f_{X_1}(x_1|0) dx_1 = \frac{1}{\sqrt{\pi N_0}} \int_0^\infty \exp\left[-\frac{1}{N_0}(x_1 + \sqrt{E_b})^2\right] dx_1$$

PDF of X_1 when '0' is transmitted

Prof. Tsai

Error Probability of Binary PSK (Cont.)

• Putting $z = (x_1 - \sqrt{E_b}) / \sqrt{N_0}$ and changing the variable of integration to z, we have

$$p_{01} = \frac{1}{\sqrt{\pi}} \int_{-\infty}^{-\sqrt{E_b/N_0}} \exp\left[-z^2\right] dz = \frac{1}{2} \operatorname{erfc}\left(\sqrt{E_b/N_0}\right)$$

- where $\operatorname{erfc}(\cdot)$ is the **complementary error function**
- Similarly, the conditional probability p_{10} of the receiver deciding in favor of symbol 1, given that symbol 0 was transmitted, has **the same value** as p_{01}
- Assuming $p_1 = p_0$, the average probability of symbol error or, equivalently, the bit error rate for coherent binary PSK is

$$P_e = \frac{1}{2} \operatorname{erfc}\left(\sqrt{E_b/N_0}\right)$$

Error Probability of Binary PSK (Cont.)

Complementary error function:

$$\operatorname{erfc}(u) = \frac{2}{\sqrt{\pi}} \int_{u}^{\infty} \exp(-z^{2}) dz$$

$$Q(u) = \frac{1}{2}\operatorname{erfc}\left(\frac{u}{\sqrt{2}}\right)$$

• For large positive values of u, we have an upper bound

$$\operatorname{erfc}(u) < \frac{\exp(-u^2)}{\sqrt{\pi}u}$$

Prof. Tsai

Generation of Binary PSK Signals

- The signal transmission encoding is performed by a polar nonreturn-to-zero (NRZ) level encoder
- The resulting binary wave and a sinusoidal carrier $\phi_1(t)$ are applied to a **product modulator** to produce the binary PSK signal

Polar NRZ

- Polar nonreturn-to-zero (NRZ) signaling:
 - Symbol 1: a pulse of amplitude A for the duration of the symbol
 - Symbol 0: a pulse of amplitude –A for the duration of the symbol

Prof. Tsai

Detection of Binary PSK Signals

- The received noisy PSK signal x(t) is applied to a **correlator**
 - which is supplied with a locally generated **coherent** reference signal $\phi_1(t)$ (Coherent detection is necessary)
- The output x_1 is compared with a **threshold** of **zero volts**
 - If $x_1 > 0$, the receiver decides in favor of **symbol 1** $(s_1(t))$
 - If $x_1 \le 0$, the receiver decides in favor of **symbol 0** $(s_2(t))$
 - If $x_1 = 0$, the receiver makes a random guess

Power Spectra of Binary PSK Signals

- The complex envelope of a binary PSK signal only consists of an in-phase component
 - Symbol 1: + g(t)

$$g(t) = \begin{cases} \sqrt{2E_b/T_b}, & 0 \le t < T_b \\ 0, & \text{otherwise} \end{cases}$$

The symbol shaping function: $g(t) = \begin{cases} \sqrt{2E_b/T_b}, & 0 \le t < T_b \\ 0, & \text{otherwise} \end{cases}$ The energy spectral density is the squared magnitude of the signal's Fourier transform $S_{R}(f) = \frac{2E_b \sin^2(\pi T_b f)}{2E_b \sin^2(\pi T_b f)}$

$$S_B(f) = \frac{2E_b \sin^2(\pi T_b f)}{(\pi T_b f)^2}$$
$$= 2E_b \operatorname{sinc}^2(T_b f)$$

Prof. Tsai 39

QuadriPhase-Shift Keying (QPSK) Quadrature Phase-Shift Keying

QuadriPhase-Shift Keying (QPSK)

- Quadriphase-Shift Keying is used to improve **bandwidth** efficiency ⇒ an example of quadrature-carrier multiplexing
- The two orthonormal basis functions are

$$\phi_1(t) = \sqrt{2/T} \cos(2\pi f_c t); \quad \phi_2(t) = \sqrt{2/T} \sin(2\pi f_c t)$$

• In QPSK, the phase of the carrier takes on one of four equally spaced values, such as $\pi/4$, $3\pi/4$, $5\pi/4$, and $7\pi/4$

Prof. Tsai

Signal Space of QPSK

• The transmitted signal is defined as

$$s_i(t) = \begin{cases} \sqrt{2E/T} \cos(2\pi f_c t + \underline{(2i-1)\pi/4}), & 0 \le t < T \\ 0, & \text{elsewhere} \end{cases}, i = 1, 2, 3, 4$$

 $-E = 2E_b$ is the symbol energy; $T = 2T_b$ is the symbol duration

• Based on $\cos(x+y) = \cos(x)\cos(y) - \sin(x)\sin(y)$

$$\begin{array}{c}
\phi_1(t) \Rightarrow s_I \\
\phi_2(t) \Rightarrow -s_O
\end{array}$$

 $s(t) = s_I(t)\cos(2\pi f_c t) - s_O(t)\sin(2\pi f_c t)$

$$s_{i}(t) = \sqrt{\frac{2E}{T}} \cos \left[(2i-1)\frac{\pi}{4} \right] \cos(2\pi f_{c}t) \left(\sqrt{\frac{2E}{T}} \sin \left[(2i-1)\frac{\pi}{4} \right] \sin(2\pi f_{c}t) \right)$$

 \Rightarrow The two **basis functions** \Rightarrow The signal vectors are

$$\phi_1(t) = \sqrt{2/T} \cos(2\pi f_c t)$$

$$\phi_2(t) = \sqrt{2/T} \sin(2\pi f_c t)$$

$$\mathbf{s}_i = \begin{bmatrix} \sqrt{E} \cos\left((2i-1)\pi/4\right) \\ -\sqrt{E} \sin\left((2i-1)\pi/4\right) \end{bmatrix}$$

Signal Space of QPSK (Cont.)

- Gray-encoding is used
 - Only **one bit** is changed from one **dibit** to the next

	Gray-encoded input dibit	Phase of QPSK	Message Points s_{i1} s_{i2}	
	10	$\pi/4$	$+\sqrt{E/2}$ $-\sqrt{E/2}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	00	$3\pi/4$	$-\sqrt{E/2}$ $-\sqrt{E/2}$	
	01	$5\pi/4$	$-\sqrt{E/2}$ $+\sqrt{E/2}$	
	,11,	$7\pi/4$	$+\sqrt{E/2}$ $+\sqrt{E/2}$	$\int \int \int d(t)$
I-0	channel Q-ch	$\mathbf{s}_i = \int \sqrt{I}$	$\overline{E}\cos\left((2i-1)\frac{\pi}{4}\right)$	$01 \qquad 11 \\ s_3(t) \qquad s_4(t)$
		-	$\overline{E}\sin\left((2i-1)\frac{\pi}{4}\right)$	IQ-plane

Prof. Tsai

Signal Space of QPSK (Cont.)

• According to the two **basis functions**, the complex plane is divided into four decision regions $\phi_1(t) = \sqrt{2/T} \cos(2\pi f_c t)$ $O(-\phi_c(t)) \quad \phi_2(t) = \sqrt{2/T} \sin(2\pi f_c t)$

Example 1: QPSK

A QPSK signal can be regarded as two orthogonal BPSK signals

Error Probability of QPSK

The observation vector \mathbf{x} of QPSK has two elements

$$x_1 = \int_0^T x(t)\phi_1(t) dt = \sqrt{E} \cos[(2i-1)\pi/4] + w_1 = \pm \sqrt{E/2} + w_1$$

$$x_2 = \int_0^T x(t)\phi_2(t) dt = -\sqrt{E} \sin[(2i-1)\pi/4] + w_2 = \mp \sqrt{E/2} + w_2$$

Based on the ML decision rule, the decision regions are

$$Z_1: \begin{cases} 0 < x_1 < \infty \\ -\infty < x_2 < 0 \end{cases}; Z_2: \begin{cases} -\infty < x_1 < 0 \\ -\infty < x_2 < 0 \end{cases}; Z_3: \begin{cases} -\infty < x_1 < 0 \\ 0 < x_2 < \infty \end{cases}; Z_4: \begin{cases} 0 < x_1 < \infty \\ 0 < x_2 < \infty \end{cases}$$

- A coherent QPSK system is equivalent to two coherent BPSK systems $\Rightarrow x_1$ and x_2 can be viewed as **independent outputs**
- The equivalent coherent BPSK systems are characterized as
 - The signal energy per bit is E/2
 - The **noise variance** is $N_0/2$

45

Error Probability of QPSK (Cont.)

According to the average bit error probability of coherent
 BPSK, the average probability of bit error in each channel is

$$P' = \frac{1}{2}\operatorname{erfc}\left(\sqrt{E/2/N_0}\right) = \frac{1}{2}\operatorname{erfc}\left(\sqrt{E/2N_0}\right)$$

• The average probability of a correct decision of a symbol is

$$P_c = (1 - P')^2 = 1 - \text{erfc}\left(\sqrt{E/2N_0}\right) + \frac{1}{4} \text{erfc}^2\left(\sqrt{E/2N_0}\right)$$

• The average probability of **symbol error** for coherent QPSK is

$$P_e = 1 - P_c = \operatorname{erfc}\left(\sqrt{E/2N_0}\right) - \frac{1}{4}\operatorname{erfc}^2\left(\sqrt{E/2N_0}\right)$$

• In the region where $E/2N_0 >> 1$, we can ignore the **quadratic** term

$$P_e \simeq \mathrm{erfc} \Big(\sqrt{E/2N_0} \, \Big)$$

Prof. Tsai 47

Error Probability of QPSK (Union Bound)

- Another approach (union bound) of deriving the average probability of symbol error for coherent QPSK
 - The **sum** of all **pairwise** error probabilities
 - The error regions may be overlapped
 - It is an upper bound
- For the signal point $s_i(t)$

$$P_e \le \frac{1}{2} \sum_{k=1, k \ne i}^{4} \operatorname{erfc}\left(d_{ik}/2\sqrt{N_0}\right), \quad \text{for } \forall i$$

- where d_{ik} is the distance between the two signal points $s_i(t)$ and $s_k(t)$

Bit Error Probability of QPSK

- If we consider only the set of **nearest** message points, a tighter approximated symbol error probability can be obtained
- Consider only the two **nearest** message points with the distances

$$d_{12} = d_{14} = \sqrt{2E}$$
, for message point 1

• The average probability of symbol error becomes

$$P_e \simeq 2 \times \frac{1}{2} \operatorname{erfc}\left(\sqrt{E/2N_0}\right) = \operatorname{erfc}\left(\sqrt{E/2N_0}\right)$$

• Based on Gray encoding and the fact that $E = 2E_b$, the **bit error** rate of QPSK is

$$BER = \frac{1}{2}P_e \simeq \frac{1}{2}\operatorname{erfc}\left(\sqrt{E/2N_0}\right) = \frac{1}{2}\operatorname{erfc}\left(\sqrt{E_b/N_0}\right)$$

BER of coherent BPSK:
$$P_e = \frac{1}{2} \operatorname{erfc} \left(\sqrt{E_b/N_0} \right)$$

Prof. Tsai

Generation of QPSK Signals

- The binary data sequence is transformed into the **polar form**
 - **NRZ** with symbols 1 and 0 represented by $+\sqrt{E_b}$ and $-\sqrt{E_b}$
- The binary wave is divided by a **demultiplexer** into two separate binary waves (**odd** and **even**-numbered input bits)

Detection of QPSK Signals

- The received noisy QPSK signal x(t) is applied to a pair of **correlators** (local **coherent** reference signal $\phi_1(t)$ and $\phi_2(t)$)
- The outputs x_1 and x_2 are compared with a zero-volt threshold

Prof. Tsai 51

Power Spectra of QPSK Signals

- The complex envelope of a QPSK signal consists of in-phase and quadrature components, both are equal to
 - Symbol 1: +g(t)

- Symbol 0:
$$-g(t)$$

The symbol **shaping function**: $S_{S}(t) = \begin{cases} \sqrt{E/T}, & 0 \le t < T \\ 0, & \text{otherwise} \end{cases}$

The energy spectral density is $S_{B}(f) = 2E \operatorname{sinc}^{2}(Tf) = 4E_{b} \operatorname{sinc}^{2}(2T_{b}f)$

For BPSK

$$S_B(f) = 2E \operatorname{sinc}^2(Tf)$$

= $4E_b \operatorname{sinc}^2(2T_b f)$

For BPSK
$$S_B(f) = 2E_b \operatorname{sinc}^2(T_b f)$$

Offset QPSK

Prof. Tsai

Phase Shift in QPSK Signals

- For ordinary QPSK, we have the following observations:
 - The carrier phase changes by ± 180° whenever both the inphase and quadrature components change sign
 - The carrier phase changes by ± 90° whenever the in-phase
 or quadrature component changes sign
 - The carrier phase is unchanged when neither the in-phase nor quadrature components changes sign

Phase Shift in QPSK Signals (Cont.)

- The 180° and 90° phase shift result in changes in the carrier amplitude at the transmitter
 - The carrier amplitude is the distance between the signal point and the origin
 - Signal will be distorted because of linearity limitation of the power amplifier
 - Thereby causing additional symbol errors on detection

Prof. Tsai

Offset QPSK (OQPSK)

- The OQPSK signals can change the carrier phase by only $\pm 90^{\circ}$
 - The bit stream responsible for generating the quadrature component is delayed by half a symbol interval
- The phasor trajectory does not pass through the origin
- The two basis functions of offset QPSK are defined by

$$\phi_1(t) = \sqrt{2/T} \cos(2\pi f_c t), \quad 0 \le t < T$$

$$\phi_2(t) = \sqrt{2/T} \sin(2\pi f_c t), \quad T/2 \le t < 3T/2$$

• The **bit error rate** in the in-phase or quadrature channel of a coherent QPSK system is still equal to

$$BER = \frac{1}{2}\operatorname{erfc}\left(\sqrt{E_b/N_0}\right)$$

- The same as that of the conventional QPSK systems

Offset QPSK (OQPSK) (Cont.)

Prof. Tsai 57

Offset QPSK (OQPSK) (Cont.)

M-ary PSK

Prof. Tsai

M-ary PSK

• In M-ary PSK, the carrier takes on one of M possible values

$$\theta_i = 2(i-1)\pi/M$$
, $i = 1, 2, \dots, M$

• The transmitted signal is defined as

$$s_i(t) = \sqrt{2E/T}\cos(2\pi f_c t + 2(i-1)\pi/M), \quad 0 \le t < T$$

• Each $s_i(t)$ can be expressed by the two basis functions

$$\phi_1(t) = \sqrt{2/T}\cos(2\pi f_c t); \quad \phi_2(t) = \sqrt{2/T}\sin(2\pi f_c t)$$

– where the symbol duration $T = T_b \log_2 M$

No. of bits in a symbol

• The signal-space diagram is **circularly symmetric**

• The average probability of symbol error for *M*-ary PSK can be derived based on the union bound

$$P_e \le \frac{1}{2} \sum_{k=1, k \ne i}^{M} \operatorname{erfc}\left(d_{ik} / 2\sqrt{N_0}\right)$$

M-ary PSK (Cont.)

Prof. Tsai

M-ary PSK (Cont.)

Error Probability of *M*-ary PSK

- Consider only the two **nearest** message points with the distances $d_{12} = d_{1M} = 2\sqrt{E}\sin(\pi/M)$, for message point 1
- The average probability of symbol error becomes

$$P_e \simeq \operatorname{erfc}\left(\sqrt{\frac{E}{N_0}}\sin(\pi/M)\right)$$

– where it is assumed that $M \ge 4$

Prof. Tsai

Power Spectra of M-ary PSK Signals

- The symbol duration of *M*-ary PSK is defined by $T = T_b \log_2 M$
- The energy spectral density is

Bandwidth Efficiency of M-ary PSK Signals

• The **channel bandwidth** required to pass *M*-ary PSK signals (the **main spectral lobe** of *M*-ary PSK signals) is given by

$$B = 2/T$$
 Bandwidth over the channel

- Since $R_b = 1/T_b$ and $T = T_b \log_2 M$, we may rewrite the channel bandwidth as $B = 2R_b/\log_2 M$
- The bandwidth efficiency is given by

$$\rho = \frac{R_b}{B} = \frac{\log_2 M}{2}$$

• When M is **increased**, the bandwidth efficiency is **improved** at the cost of **degradation in the error performance**

M	2	4	8	16	32	64
ρ (bits/s/Hz)	0.5	1	1.5	2	2.5	3

Prof. Tsai

Non-coherent Phase-Shift Keying

Non-coherent Phase-Shift Keying

- In some communication channels, the **phase of the channel** cannot be determined easily
 - For example, the wireless communication channels
- How to obtain the phase information for **coherent detection**?
 - The transmitter may deliver a reference signal (with fixed carrier phase known to the receiver) for the receiver to acquire the phase information of the channel
- This approach does not always work well
- $\theta \xrightarrow{\text{Channel}} \theta + \phi$ $\Rightarrow \text{Channel Phase: } \phi$
- It degrades the bandwidth efficiency
- The phase of the channel may change rapidly
- If the phase information of the channel cannot be obtained
 - Use **non-coherent** modulation scheme

Prof. Tsai

 $\pi/4$ -Differential QPSK

$\pi/4$ -Differential QPSK

- An ordinary QPSK signal may reside in either one of the two commonly used constellations
 - which are shifted by $\pi/4$ radians with respect to each other
- A $\pi/4$ -Differential QPSK signal uses the two constellations alternately in two successive symbols
- The signal may reside in any one of **eight** possible phase states

Prof. Tsai

$\pi/4$ -Differential QPSK (Cont.)

- Attractive features of $\pi/4$ -Differential QPSK includes:
 - The **phase transitions** between the signals of two successive symbols are restricted to $\pm \pi/4$ and $\pm 3\pi/4$ radians \Rightarrow Less sensitive to the **nonlinearity** of the power amplifier
 - $-\pi/4$ -Differential QPSK can be **noncoherently detected**
- The **generation** of $\pi/4$ -Differential QPSK symbols follows the pair of relationships:

$$I_k = \cos(\theta_{k-1} + \Delta \theta_k) = \cos \theta_k; \quad Q_k = \sin(\theta_{k-1} + \Delta \theta_k) = \sin \theta_k$$

Gray-encoded Input Dibit	Phase Change, $\Delta\theta$ (radians)
00	$\pi/4$
01	$3\pi/4$
11	$-3\pi/4$
10	$-\pi/4$

$\pi/4$ -Differential QPSK (Cont.)

• There will certainly have a **phase transition** between the signals of **two successive symbols**

• The data (dibit) mapped to a specific signal point is **not fixed**

Prof. Tsai

$\pi/4$ -Differential QPSK (Cont.)

• The phasor trajectory does not pass through the origin

Example 2

- The input binary sequence is 0010101
- Suppose that the initial carrier phase is $\theta_0 = \pi/4$

Step k	Phase θ_{k-1}	Input Dibit	Phase Change $\Delta \theta_k$	Transmitted Phase θ_k
1	$\pi/4$	00	$\pi/4$	$\pi/2$
2	$\pi/2$	10	$-\pi/4$	$\pi/4$
3	π/4	10	$-\pi/4$	0
4	0	01	$3\pi/4$	$3\pi/4$

Prof. Tsai

Detection of $\pi/4$ -DQPSK Signals

- The data information is not relied on the absolute signal phase
 - It relies on the relative **phase change** between two successive received symbols
 - No carrier phase information is required for data detection
- Another advantage of $\pi/4$ -DQPSK modulation is that **symbol interval synchronization** is **easier** than conventional QPSK
 - There will certainly have a phase transition between the signals of two successive symbols
- The receiver first computes the **projections** of a noisy $\pi/4$ -DQPSK signal x(t) **onto the basis functions** $\phi_1(t)$ and $\phi_2(t)$
 - To extract the received signal phase

Detection of $\pi/4$ -DQPSK Signals (Cont.)

- The resulting outputs, denoted by *I* and *Q*, are applied to a **differential detector** that consists of
 - Arctangent computer: extracting the phase of angle θ
 - Phase-difference computer: determining the change in the phase θ occurring over one symbol interval
 - Modulo- 2π correction logic: correcting errors due to the possibility of phase angles wrapping around the real axis
 - To restrict the phase difference within $(-\pi, +\pi)$

Prof. Tsai

Detection of $\pi/4$ -DQPSK Signals (Cont.)

- Let $\Delta \theta_k$ denote the computed phase difference between θ_k and θ_{k-1} for the channel outputs of symbol k and k-1
- The modulo- 2π correction logic operates as follows:

$\pi/2$ -Differential BPSK

Prof. Tsai

$\pi/2$ -Differential BPSK

- A $\pi/2$ -Differential BPSK signal uses two constellations alternately in two successive symbols
 - which are shifted by $\pi/2$ radians with respect to each other

78

$\pi/2$ -Differential BPSK

- π/2-DBPSK with appropriate filtering can be used to approximate a precoded Gaussian Minimum-Shift Keying (GMSK)
 - which is a constant-envelope modulation
- GMSK will be introduced in other chapter

Prof. Tsai

Homework

- You must give detailed derivations or explanations, otherwise you get no points.
- Communication Systems, Simon Haykin (4th Ed.)
- 6.2;
- 6.5;
- 6.6;
- 6.10;