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Introduction
• We discuss some basic issues that relate to signal transmission 

over an additive white Gaussian noise (AWGN) channel

– Geometric representation of signals with finite energy 

– Maximum likelihood (ML) procedure for signal detection 
in an AWGN channel 

– Derivation of the correlation receiver that is equivalent to 
the matched filter receiver

– Probability of symbol error and the union bound
approximation

Prof. Tsai

Digital Communication Systems



Prof. Tsai 5

Message
• Consider the most basic form of a digital communication 

system 

– A message source emits one symbol every T seconds, with 
the symbols belonging to an alphabet of M symbols denoted 
by m1, m2, ... , mM

– The a priori probabilities p1, p2, ... , pM specify the message 
source output

• Generally, it is assumed that the M symbols of the 
alphabet are equally likely

1
( ) for 1, 2, ,i ip P m i M

M
   

Channel
x(t)Message

source Transmitter Receiver
si(t)mi Estimate

of mi
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Transmitter
• The transmitter takes the message source output mi and codes it 

into a distinct signal si(t) suitable for transmission over the 
analog channel. 

• The signal si(t) is a real-valued energy signal

– A signal with finite energy

• The design of the signal si(t) is a key issue in communication 
systems

2

0
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T
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Channel
• Passing through the channel, the received signal x(t) is

–  is the complex-valued channel gain 
• The channel is assumed to have two characteristics:

– The channel is linear, with a bandwidth that is wide enough
to accommodate the transmission of signal si(t)

• with negligible or no distortion

•  includes the attenuation and phase rotation
– The channel noise w(t) is the sample function of a zero-

mean white Gaussian noise process

( ) ( ) ( ), 0 and 1, 2, ,ix t s t w t t T i M     

Received
signal

x(t)


Transmitted
signal
si(t)

White Gaussian noise w(t)
+

+
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Receiver
• The receiver has the task of 

– Observing the received signal x(t) for a duration of T
– Making a best estimate of the transmitted signal si(t) (or mi)

• However, owing to the presence of channel noise, the receiver 
will make occasional errors
– To design the receiver so as to minimize the average 

probability of symbol error

– where mi is the transmitted symbol;      is the estimate 
produced by the receiver;                      is the conditional
error probability given that the i-th symbol was sent

 Optimum in the minimum probability of error sense

 
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ˆ
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Geometric Representation
of Signals
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Linear Vector Space
• In signal analysis, we can represent signals as vectors 

– To remove some redundancy in the signals 

– To provide a more compact form for the signals

• The signal space could be constructed by amplitude, phase, 
frequency and/or time

• A vector space is called a linear vector space if it satisfies the 
following conditions:

– 1: x + y = y + x

– 2: x + (y + z) = (x + y) + z

– 3:  (x + y) =  x +  y

– 4: ( + ) x =  x +  x

– where x and y are arbitrary vectors and  and  are scalars
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Linear Vector Space (Cont.)
• In an N-dimensional linear vector space, we define a inner 

product as

– where xi and yi are the elements of x and y, respectively 

• Two vectors x and y are said to be orthogonal if x  y = 0. 

• The norm (or the length) of a vector x is denoted by ||x|| 

• This norm has the following properties:
– 5: ||x||  0
– 6: ||x|| = 0  x = 0
– 7: ||x + y||  ||x|| + ||y|| 
– 8: || x|| = ||  ||x||

• The Schwarz inequality: 

1

N

i ii
x y


 x y 

2

1
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x


  x x x

  x y x y
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Orthonormal Basis Functions
• The signal space is assumed to be an N-dimensional space

– Constructed by N orthonormal basis functions

• The goal of Geometric Representation of Signals is to represent 
any set of M energy signals {si(t), i = 1, 2, …, M} as linear 
combinations of N orthonormal basis functions, N  M

 Given a set of real-valued energy signals s1(t), s2(t), …, sM(t) 

1

0
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Orthonormal Basis Functions (Cont.)
• The real-valued basis functions 1(t), …, N(t) are orthonormal

– Each basis function is normalized to have unit energy

– The basis functions 1(t), 2(t), …, N(t) are orthogonal
with respect to each other over the interval 0  t  T

• The set of             may be viewed as an N-dimensional vector si

– A one-to-one relationship with the transmitted signal si(t)

0

1 if
( ) ( )

0 if

T

i j ij

i j
t t dt

i j
  


   


Kronecker delta function

N
jijs 1}{ 
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Signal Synthesizer and Analyzer
• Synthesizer: given the N elements of the vectors si (i.e., si1, 

si2, …, siN) as input to generate the signal si(t) 

• Analyzer: given the signals si(t), i = 1, 2, …, M, as input to 
calculate the coefficients si1, si2, …, siN



 dtsi1

1(t)
si2

2(t)

siN

N(t)

…

…

si(t)

Synthesizer

si(t)

si1

si2

siN

…

Analyzer

1(t)

2(t)

N(t)

…

 dt

 dt

…
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Signal Vector
• Each signal in the set {si(t)} is completely determined by the 

vector of its coefficients

• The vector si is called a signal vector

• Consider an N-dimensional Euclidean space

– There are N mutually perpendicular axes labeled 1(t), 
2(t), …, N(t) 

– The set of signal vectors {si | i = 1, 2, …, M} defines a 
corresponding set of M points in the Euclidean space 

– This Euclidean space is called the signal space

Mi
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Signal Space
• M = 3 and N = 2

1(t)

2(t)
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Signal Space (Cont.)
• M = 3 and N = 3

1(t)

2(t)

3(t)

s1
s2

s3

s13

s12

s11

s32
s33

s31

s21

s22

s23
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Signal Energy
• The squared-length of any signal vector si is defined as the 

inner product or dot product of si with itself

• The energy of a signal si(t) of duration T seconds is defined as

• Since the j(t), j = 1, 2, …, N, form an orthonormal set

2 2
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Distance and Angle
• For a pair of signals si(t) and sk(t), the inner product of the 

signals over the interval [0, T] is

• For a specific pair of signals si(t) and sk(t), the inner product is 
invariant to the choice of basis functions       

– The rotation of the coordinate system does not change the 
locations of signal points

• The Euclidean distance of two vectors si and sk is

• The angle ik between two signal vectors si and sk follows

k
T
i

T

ki dttsts ss0 )()(
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Gram-Schmidt Orthogonalization Procedure 
• Suppose we have a set of M energy signals: s1(t), s2(t), …, sM(t) 

with signal energy E1, E2, …, EM

• We need to generate a complete orthonormal set of basis 
functions  Gram-Schmidt Orthogonalization Procedure

• Starting with s1(t) chosen from this set arbitrarily,

– The first basis function is defined by 

• Next, using the signal s2(t), we define the coefficient s21 as 

• We obtain a new function g2(t) orthogonal to 1(t) over the 
interval 0  t  T

1 1 1 1 1 1 11 1( ) ( ) , ( ) ( ) ( )t s t E s t E t s t    

21 2 10
( ) ( )

T
s s t t dt 

2 2 21 1( ) ( ) ( )g t s t s t 
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• Define the second basis function as 

• Continuing in this fashion, we have

• Define the set of basis functions (an orthonormal set)

G-S Orthogonalization Procedure (Cont.)

2 2 21 1
2 22

2 2120

2
2 21 1 2 21 2 21 1 22 2
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• The dimension N is less than or equal to the number M

– If the signals s1(t), s2(t), …, sM(t) form a linearly 
independent set, we have N = M

– If the signals s1(t), s2(t), …, sM(t) are not linearly 
independent, we have N < M and the function gi(t) is zero 
for i > N (si(t), i > N, is fully expanded by n(t), n = 1, …, N)

• The form of the basis functions 1(t), 2(t), …, N(t) has not 
been specified

– i(t) is not restricted to be either sinusoidal or sinc
functions of time 

• The expansion of the signal si(t) is an exact expression where 
N and only N terms are significant

G-S Orthogonalization Procedure (Cont.)
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Conversion of the Continuous AWGN 
Channel into a Vector Channel
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Conversion of the Received Signal
• At a receiver, the received signal is perturbed by AWGN

– The received signal x(t) = si(t) + w(t)

• What is the characteristic (distribution) of the received signal 
vector in the signal space?

• Can the received noise be completely expanded by the N-
dimensional space (the N orthonormal basis functions)?

– If not, will the data detection performance be impacted 
when only the signal space is considered?
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Correlator Outputs of the Received Signal
• Let the input to the bank of N product correlators (analyzer) be 

the received signal x(t) = si(t) + w(t)

– where w(t) is a sample function of a white Gaussian noise 
process W(t) of zero mean and power spectral density N0/2

• The output of correlator j is the sample value of a random 
variable Xj

– where 

– The sample value of noise Wj

 dt

x(t)

x1

x2

xN

…

1(t)

2(t)

N(t)

…

 dt

 dt

…
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s w j N


  
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0
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0
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T

j jw w t t dt 
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Correlator Outputs of the Received Signal(Cont.)
• Consider a new random process whose sample function is

– which depends solely on the channel noise w(t)

• The received signal can be expressed as

– w(t) is the remainder term that cannot be expanded by 
the selected basis functions 

– No signal component outside the signal space

• w(t) has no impact on data detection

 
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Statistical Characterization
• The random process X(t) is a Gaussian process

– Xj is a Gaussian random variable for all j

• The mean of Xj depends only on sij, 

• The variance of Xj is 

• Note that the random variable Wj is defined as 

• Therefore, we have 

jX j ij j ij j ijE X E s W s E W s                

2 2 2var ( )
jX j j ij jX E X s E W             

j ij jx s w 

0
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j jW W t t dt 
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0 0
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T T

X j j

T T
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E W t t dt W u u du

E t u W t W u dt du

  

 

    
    

 
 
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Statistical Characterization (Cont.)
• Interchanging the order of integration and expectation:

– where RW(t, u) is the autocorrelation function of W(t)

• Thus, we obtain

• Since the basis functions j(t) have unit energy, we get

0( , ) ( )
2W

N
R t u t u 

 2
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Statistical Characterization (Cont.)
• Since the basis functions j(t) form an orthogonal set, Xj are 

mutually uncorrelated

• Since Xj are Gaussian random variables, they are also 
statistically independent (Property of a Gaussian Process)

0 0
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Statistical Characterization (Cont.)
• Define the observation vector of N random variables as

• The conditional probability density function (pdf) of X, given 
that si(t) or correspondingly the symbol mi was transmitted, is 

• Since each Xj is a Gaussian random variable 

• The conditional pdf of X is

 1 2

T

NX X XX 
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 
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Statistical Characterization (Cont.)
• Note that the observation vector X completely characterizes the 

received signal x(t), except for the remaining noise term w(t)

• Since the noise process W(t) is Gaussian with zero mean, the 
noise process W(t), with the sample function w(t), is also a 
zero-mean Gaussian process

• Any random variable W(tk), derived from W(t), is statistically 
independent of the set of random variables {Xj}, i.e., 

• W(tk) is irrelevant to the message decision

– W(tk) is outside the N-dimensional signal space

– The N correlator outputs are used for decision-making

1
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N

j jj
x t x t w t
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 
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Theorem of Irrelevance
• Theorem of irrelevance: For signal detection in additive 

white Gaussian noise, only the projections of the noise onto 
the basis functions of the signal set {si(t)} affects the sufficient 
statistics (i.e., the statistics of X) of the detection problem; the 
remainder of the noise is irrelevant.

• The AWGN channel is equivalent to an N-dimensional vector 
channel described by the observation vector

– where the dimension N is the number of basis functions
involved in formulating the signal vector si

 1 2
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N

i M

w w w
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Likelihood Functions
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Likelihood Functions
• At the receiver, we are given the observation vector x

– The requirement is to estimate the message symbol mi that 
is responsible for generating x

• The definition of the likelihood function

– The possibility that the message symbol mi was transmitted 
when the observation vector is x

• In practice, we generally use the log-likelihood function 

• The log-likelihood function bears a one-to-one mapping to the 
likelihood function

– A probability density function is always nonnegative

– The logarithmic function is monotonically increasing

( ) ( ), 1, 2, ,i iL m f m i M X x 

( ) log ( ), 1, 2, ,i il m L m i M  

The joint pdf of x
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Likelihood Functions (Cont.)
• For an AWGN channel, the log-likelihood function is 

– where the constant term                                 is ignored 

– The constant term is the same for different values of mi

– It bears no relation whatsoever to the message symbol mi

 2
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N

i j ij
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N 

    

   02 logN N

x
fX(x1|mi)

si (mi) sj (mj)

fX(x2|mj)

x2 x1
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2
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Coherent Detection of Signals in Noise: 
Maximum Likelihood Decoding
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Signal Points
• The transmitted signal si(t) can be represented as a point in a 

Euclidean space of dimension N  M

– The transmitted signal point or message point of si(t) 

• The set of M message points corresponding to the set of 
transmitted signals is called as a signal constellation

• The observation vector x (received signal point) differs from 
the transmitted signal vector si by a random noise vector w

1(t)

2(t)

3(t)

1(t)

2(t)

3(t)

Gaussian
distributed
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Signal Detection – MAP Decision Rule
• Given the observation vector x, perform a mapping from x to an 

estimate of the transmitted symbol mi

– In a way that would minimize the probability of error in 
the decision-making process

• We can state the optimum decision rule as:

– Maximize P(mi sent | x) is equivalent to minimize Pe(mi | x) 

• This decision rule is referred to as the maximum a posteriori
probability (MAP) rule (based on the observation of outcome)

– The event probability based on the received signal vector x

m̂

( ) (  not sent ) 1 (  sent )e i i iP m P m P m  x x x

ˆSet  if
(  sent ) (  sent ) for all 

i

i k

m m
P m P m k i


 x x
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Signal Detection – MAP Decision Rule (Cont.)
• Based on MAP rule, we need the following probability or pdf 

• According to the distribution AWGN, we only have  fX(x|mi) 

• Using Bayes’ rule

– A: mi; B: x

( ) ( )( ) ( )
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(

) (
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P A P B AP A B P A B
P A B
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P f f


  


x x x

x
x x x

( )if mx ( )iP m x

Available Unavailable

( )iP m
Is it available?

: a small interval
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Signal Detection – MAP Decision Rule (Cont.)
• Therefore, we may restate the MAP rule as follows:

– pk is the a priori probability of transmitting symbol mk

– fX(x|mk) is the conditional pdf of X given the transmission 
of mk, and fX(x) is the unconditional pdf of X

• The denominator fX(x) is independent of the transmitted symbol

• The decision rule depends on both  pk and fX(x|mk) (likelihood)  

– The decision rule is in favor of the symbols with a large pk

• If all the symbols are equally likely, pk = pi for all i and k

– The conditional pdf fX(x|mk) bears a one-to-one mapping to 
the log-likelihood function l(mk) 

( )
ˆSet  if  is maximum for 

( )
k k

i

p f m
m m k i

f
 X

X

x

x

The a priori
probabilities
are required
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Maximum Likelihood (ML) Decision Rule
• Accordingly, we can restate the decision rule as follows:

– This decision rule is referred to as the maximum likelihood 
(ML) rule and the device for its implementation is the 
maximum likelihood decoder

• Based on the observation vector x, the decoder computes the 
log-likelihood functions as metrics for all the M possible 
message symbols, compares them, and then decides in favor of 
the maximum

• The ML decoder differs from the MAP decoder in that it 
assumes equally likely message symbols

– The ML decoder does not require the a priori probabilities 

ˆSet  if
( ) is maximum for 

i

k

m m
l m k i



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Comparison: MAP and ML Decision Rules
• If the transmitting message symbols are equally likely, the 

MAP and ML decision rules have the same performance.

• If the transmitting message symbols are not equally likely, the 
MAP decision rule is superior to the ML decision rule 

– Since the information of a priori probabilities is available

• For example, there are two message symbols with the a priori
probabilities  p0 = 0.9999 and  p1 = 0.0001 

– Considering the a priori probabilities is very important

• However, in general, the transmitting message symbols are
equally likely for practical systems

– The ML decision rule is commonly used
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Maximum Likelihood Decision Rule (Cont.)
• Let Z denote the N-dimensional space (observation space) of 

all possible observation vectors x

• The observation space Z is partitioned into M-decision regions, 
Z1, Z2, …, ZM (which are non-overlapping)    

– Accordingly, we can restate the ML decision rule as follows:

• For an AWGN channel, the LLF l(mk) attains its maximum 

value when                           is minimized by the choice k = i

– Accordingly, we can restate the ML decision rule as follows:

Observation vector  lies in region  if
( ) is maximum for 

i

k

Z
l m k i

x

2

1
( )

N

j kjj
x s




2

1

Observation vector  lies in region  if

( )  is minimum for 
i

N

j kjj

Z

x s k i


 
x
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Maximum Likelihood Decision Rule (Cont.)
• is the Euclidean distance square between x and sk

– Accordingly, we can restate the ML decision rule as follows:

• The ML decision rule is simply to choose the message point 
closest to the received signal point

• Note that 

– Accordingly, we can restate the ML decision rule as follows:

2

1
( )

N

j kjj
x s




Observation vector  lies in region  if
the Euclidean distance  is minimum for 
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k
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1(t)

2(t)

Maximum Likelihood Decision Rule (Cont.)
– where Ek is the energy of the transmitted signal sk(t)

• Example:

N  2 and M  4

2

1

N

k kjj
E s



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Correlation Receiver
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Optimum Receiver
• The optimum receiver consists of two subsystems: 

– The detector part: It consists of a bank of M product-
integrators or correlators

– The signal transmission decoder: It is implemented in the 
form of an ML decoder

 dt

x(t)

x1

x2

xN

…

1(t)

2(t)

N(t)

…

 dt

 dt

…

x

Accumulator

s1

s2

sM

…

…


E1/2
+ -

xTs1

Select
largest

Estimate
m̂Accumulator 

E2/2
+ -

Accumulator 

EM/2
+ -

Inner-product calculator

Detector part Signal transmission decoder
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Equivalence: Correlation – Matched Filter
• We can use a corresponding set of matched filters to build the 

detector 

• Consider a linear time-invariant filter with impulse response hj(t)

• When the received signal x(t) is used as the filter input, the 
resulting filter output yj(t) is

• The impulse response hj(t) matched to an input signal j(t) is 

( ) ( ) ( )j jy t x h t d  



 

( ) ( )j jh t T t 

0 T

( )t

t t

( ) ( )h t T t 

0 T

1

( ) ( ) ( )
( ) ( )

i
N

i ij jj

x t s t w t
s t s t



 

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Equivalence: Correlation – Matched Filter(Cont.)
• Then the filter output is 

• Sampling the output at time t = T, we get

• Since j(t) is zero outside the interval 0  t  T

( ) ( ) ( )j jy t x T t d   



  

( ) ( ) ( )j jy T x d   



 

0
( ) ( ) ( )

T

j jy T x d    
1(T – t)

Received 
signal

x(t)

x1

……

Observation 
vector

x

2(T – t)

N(T – t)

x2

xN

Matched
filters

Sample
at t = T
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Probability of Error
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Noise Performance
• Suppose that symbol mi is transmitted and an observation 

vector x is received 

– An error occurs whenever the received signal point does 
not fall inside region Zi

• The average probability of symbol error is

• Since x is the sample value of random vector X, Pe can be 
expressed in terms of the likelihood function as follows: 

1

1

(  does not lie in  sent)

1
1 (  lies in  sent)

M

e i i ii

M

i ii

P p P Z m

P Z m
M







 




x

x
1

,ip i
M

 

1

1
1 ( )

i

M

e iZ
i

P f m d
M 

   X x x

Correct detection prob.
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Invariance to Rotation and Translation
• For the ML detection of a signal in AWGN, changes in the 

orientation of the signal constellation with respect to both the 
coordinate axes and origin of the signal space do not affect
the probability of symbol error Pe

– In ML detection, Pe depends solely on the relative 
Euclidean distances between the message points

– The AWGN is spherically symmetric in all directions

• The effect of a rotation applied to all the message points is 
equivalent to multiplying the signal vector si by an N-by-N
orthonormal matrix Q for all i

– where the matrix Q satisfies 
T QQ I Identity matrix
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Invariance to Rotation and Translation (Cont.)
• The signal (noise) vector si (w) is replaced by the rotated version 

• The statistical characteristics of the noise vector are unaffected

• The observation vector for the rotated signal constellation is

• The Euclidean distance between xrotate and si,rotate is 

• Also note that 

,rotate

rotate

, 1, 2, ,i i i M 


s Qs
w Qw



  0
rotate rotate rotate;

2
T N

E E    w 0 w w I

rotate rotate , 1, 2, ,i i i M    x Qs w Qs w 

rotate ,rotate , for all i i i  x s x s

rotate rotate
T T T

i i i      x Q x Q Qs Q w s w s w
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Invariance to Rotation and Translation (Cont.)
• For translation, we have 

,translate

translate

translate ,translate

, 1, 2, ,
,

, for all 

i i

i i

i M

i

  
 
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s s a
x x a

x s x s



1(t)1(t)

2(t)2(t)
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Minimum Energy Signals
• Based on the principle of translational invariance, we can 

translate the signal constellation to minimize the average energy

• The average energy of the signal constellation translated by a 
vector a is 

– where E is the average energy of the original signal 
constellation and 

• Differentiating Etranslate with respect to a and setting it to zero

– The minimizing translate is 

– The minimum average energy 

2

translate 1
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Union Bound on the Probability of Error
• The average probability of symbol error Pe is 

• Numerical computation of the integral may be impractical

– We can approximate Pe by simplifying the integral or 
simplifying the region of integration

• Union bound: a simple upper bound that bases on simplifying 
the region of integration 

• Let Aik, i, k{1, 2, …, M}, denote the event that the observation 
vector x is closer to sk than to si when the symbol mi is sent

• The conditional probability of symbol error Pe(mi) is equal to the 
probability of the union events Ai1, Ai2, …, Ai,i-1, Ai,i+1, …, AiM

1

1
1 ( )

i

M

e iZ
i

P f m d
M 

   X x x

Aik and Aij may be overlapped
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Union Bound on the Probability of Error (Cont.)
• The probability of a finite union of 

events is overbounded by the sum of 
the probabilities of the constituent 
events

1,

( ) ( ), 1, 2, ,
M

e i ik
k k i

P m P A i M
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Union Bound on the Probability of Error (Cont.)
• Note that the probability P(Aik) is different from the probability 

P(    = mk|mi); in fact, P(Aik) > P(    = mk|mi)   
• P(Aik)  P2(si, sk) is the pairwise error probability in that the 

system uses only a pair of signals si and sk

– dik = || si – sk || is the Euclidean distance between si and sk

• Setting  z = v/N0, 
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Union Bound on the Probability of Error (Cont.)
• The probability of symbol error is overbounded as follows:

• Suppose that the signal constellation is circularly symmetric
about the origin  Pe(mi) is the same for all i

• Define dmin as the minimum distance between any two signals

• We can also further simplify the union bound on Pe as
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Bit versus Symbol Error Probabilities
• For binary data transmission, it is more meaningful to consider 

the bit error rate (BER): there are K = log2M bits per symbol

• Case 1: Gray encode is applied

– Any two adjacent symbols differ in only one bit position

– Given a symbol error, the most probable number of bit errors 
is 1  The BER is bounded as follows:

• Case 2: All error symbols occur equally likely

– Assumed mi = ‘000’, M – 1 error symbols: 

– The occurrence prob. of an error symbol

– There are 2K – 1 error symbols that the i-th bit is in error 

– The BER is 

2log BERe eP M P  All bits are in errorOnly 1 bit
is in error

   1 2 1K
e eP M P  

     12 2 1 2 1 2K K
e e eP M M P P        

‘001’, ‘010’, ‘011’, 
‘100’, …, ‘111’

Different
Modulation
Types
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Homework
• You must give detailed derivations or explanations, 

otherwise you get no points. 

• Communication Systems, Simon Haykin (4th Ed.)

• 5.2 

• 5.3 

• 5.9

• 5.12 

• 5.17


