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課程要求

• 課程要求

– Homework: 30 %

– Midterm Exam: 35 %

– Final Exam: 35 %

• 教科書：

– Communication Systems, Simon Haykin (4th Ed./5th Ed.)
John Wiley & Sons, Inc.

• 講義位置：https://nyquist.ee.nthu.edu.tw/WCS.html
(Password: CommsysII20250219EE4640)

• 助教時間：每週二13:20~15:10, EECS 605 室

• 助教：TWNTHUEE4640@gmail.com 
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課程內容

• Preliminaries

• Ch. 1: Signal-Space Analysis

• Ch. 2: Phase-Shift Keying Modulation

• Ch. 3: Hybrid Amplitude/Phase Modulation

• Ch. 4: Frequency-Shift Keying Modulation

• Ch. 5: Detection of Signals with Unknown Phase (Non-coherent 
Detection)

• Ch. 6: Comparison of Digital Modulation Schemes Using a Single 
Carrier   期中考試

• Ch. 7: Information Theory

• Ch. 8: Multichannel Modulation

• Ch. 9: Error-Control Coding

• Ch. 10: Spread-Spectrum Modulation   期末考試
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Introductory Courses
• Signals and Systems

– Signals and Systems
– Linear Time-Invariant Systems
– Fourier Analysis

• Probability Theory
– Probability 
– Statistic 

• Communications System I
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Ch. 1 – Signal-Space Analysis
• 3D signal space

• N = 3 signal points
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Ch. 1 – Signal-Space Analysis (Cont.)
• Signal Detection – MAP (maximum a posteriori probability) 

and ML (maximum likelihood) decision rules

• The observation vector x (received signal point) differs from 
the transmitted signal vector si by a random noise vector w

• Given the observation vector x, perform a mapping from x to an 
estimate of the transmitted symbol mim̂
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Ch. 2 – Phase-Shift Keying Modulation
• In an M-ary PSK modulation scheme, multiple bits are 

transmitted in a symbol

• The signal are generated by changing the phase of a sinusoidal 
carrier in M discrete steps

• In QPSK, the phase of the carrier takes on one of four equally 
spaced values, such as /4, 3/4, 5/4, and 7/4

1(t)

2(t)
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Ch. 3 – Hybrid Amplitude/Phase Modulation
• M-ary Quadrature Amplitude Modulation (QAM) is a two-

dimensional generalization of M-ary PAM (Pulse-Amplitude 
Modulation)

• Consider a 16-QAM constellation:                                               
4 bits per symbol
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Ch. 4 – Frequency-Shift Keying Modulation
• In an M-ary FSK modulation scheme, multiple bits are 

transmitted in a symbol

• The signal are generated by changing the frequency of a 
sinusoidal carrier in M discrete steps

• In binary FSK, symbols 1 and 0 are distinguished from each 
other by transmitting one of two sinusoidal waves that differ in 
frequency by a fixed amount
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Ch. 5–Detection of Signals with Unknown Phase
• In previous study, we assume that the receiver is perfectly 

synchronized (in both frequency and phase) to the transmitter 

– The only channel impairment is AWGN

• In practice, there is also uncertainty due to the randomness of 
certain signal parameters; for example, a time-variant channel

• The phase may change in a way that the receiver cannot follow

– The receiver cannot estimate the received carrier phase

– The carrier phase may change too rapidly for the receiver 
to track

• A digital communication receiver with no provision made for 
carrier phase recovery is said to be noncoherent

– Noncoherent detection 
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Ch. 6–Comparison of Digital Modulation Schemes
• The popular digital modulation schemes are classified into two 

categories, depending on the method of detection used at the 
receiver:

– Class I, Coherent detection: 

• Binary PSK: two symbols, single frequency

• Binary FSK: two symbols, two frequencies

• QPSK: four symbols, single frequency—includes the 
QAM as a special case

• MSK: four symbols, two frequencies

– Class II, Noncoherent detection: 

• DPSK: two symbols, single frequency

• Binary FSK: two symbols, two frequencies
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Ch. 7 – Information Theory
• In communications, information theory deals with modeling 

and analysis of a communication system 

• In particular, it provides answers to two fundamental questions: 

– Signal Source: What is the irreducible complexity, below 
which a signal cannot be compressed?

– Channel: What is the ultimate transmission rate for 
reliable communication over a noisy channel?

Information
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sink

Noise

CapacityEntropy
Error-free
reception
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Ch. 8 – Multichannel Modulation
• Consider a linear wideband channel with an arbitrary 

frequency response H( f ). 

– The magnitude response |H( f )| is                             
approximated by a staircase function 

– f: the width of each subchannel

• In each step, the channel may be assumed to operate as an 
AWGN channel free from inter-symbol interference. 

• Power Loading is to maximize the bit rate R through an 
optimal sharing of the total transmit power P between the N 
subchannels

– Subject to the total transmit power constraint

A subchannel with
almost no distortion

H( f )
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Ch. 9 – Error-Control Coding
• Error-control coding: At the transmitter, incorporate a fixed 

number of redundant bits into the structure of a codeword

• It is feasible to provide reliable communication over a noisy 
channel

– Provided that Shannon’s code theorem is satisfied 

• In effect, channel bandwidth is traded off for reliability in 
communications. 

• Another practical motivation for the use of coding is to reduce
the required Eb/N0 for a fixed BER. This reduction in Eb/N0

may, in turn, be exploited to

– Reduce the required transmitted power 

– Reduce the hardware costs by requiring a smaller antenna 
size (antenna gain) in the case of radio communications
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Ch. 10 – Spread-Spectrum Modulation
• Spread-spectrum modulation refers to any modulation scheme 

that produces a spectrum for the transmitted signal much wider
than the bandwidth of the information being transmitted 

• The demodulation must be accomplished, in part, by 
correlating the received signal with a replica of the signal that 
is used in the transmitter to spread the information signal

BT
BSS

freq.
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Preliminaries



Prof. Tsai

Probability and Random Variables
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Probability
• Probability: Axioms and Definitions   

• Conditional Probability and Bayes’ rule

• Random Variables

– Cumulative distribution function (CDF)

– Probability mass/density function (PMF/PDF) 

• Multiple Random Variables

– Joint CDF and Joint PMF/PDF

– Conditional PMF/PDF and Marginal PMF/PDF

• Statistical Averages

– Expectation

– Moments and Central Moments 

• Gaussian (Normal) Distribution
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Fourier Theory and Signal 
Representation
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Fourier Transform
• Fourier Series: Periodic signals

• Fourier Transform: Non-periodic deterministic signals

• Properties of Fourier Transform
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Random Process, Autocorrelation and 
Power Spectral Density
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Random Process
• Concept of Random Process

– Stationary and Non-stationary Processes

• Autocorrelation Function

– Stationary Processes

• Power Spectral Density 

– Definition (Fourier Transform of Autocorrelation Function)

– Average Total Power 
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Sinusoidal Signal Representation
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Sinusoidal Signal Representation
• Consider a general sinusoidal signal 

– A(t) is the time-varying envelope 

– fc is the carrier frequency

– (t) is the time-varying phase 

• The time-varying phase also implies that the instantaneous 
frequency is time-varying   

• The signal can also be represented as 

– is known as the complex envelope (a low-pass signal)
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Sinusoidal Signal Representation (Cont.)
• For a specific known carrier frequency fc, the signal s(t) can be 

completely represented by the complex envelope
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Constant Envelope and Zero Phase
• When the envelope A(t) is constant (A(t) = 1) and (t) = 0 

    cos expRe2( ) 2c cf ts t j f t  
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Time-varying Envelope and Zero Phase
• When the envelope A(t) is time-varying and (t) = 0  
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Constant Envelope and Time-varying Phase
• When the envelope A(t) is constant and (t) is time-varying
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Constant Envelope and Constant Phase
• When both the envelope A(t) and phase (t) (= /2) are constant 

    cos 2 exp 2( ) Re2 2c cf ts f jt j t     
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Constant Envelope and Constant Phase (Cont.)
• In general, we can set 2fct as the reference phase (i.e., the 

zero phase)

• Then, a signal with constant envelope A and constant phase 
can be represented as a complex number (a point in the 
complex-plane)

 ( ) cos 2 cs t A f t  
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Note that the projection on 
the Re axis is no longer

the amplitude of the signal! 
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Constant Envelope and Time-varying Phase
• Similarly, a signal with constant envelope A(t) and time-varying 

phase (t) can be represented as a time-varying point in the 
complex-plane
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Time-varying Envelope and Phase
• Similarly, a signal with time-varying envelope A(t) and phase 

(t) can be represented as a time-varying point in the complex-
plane
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Representation of 16QAM Signals
• QAM: a kind of digital modulation by using different phases

and/or different amplitudes to represent different data

• 16QAM: 16 signal points (complex numbers) representing 4-bit 
data
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Band-pass Signals
• A band-pass signal is sinusoidal with approximate frequency fc

and an amplitude varying with time

– where a(t) is the envelope and (t) is the phase of the signal

• The band-pass signal                                                can be 
rewritten as

– where          is referred to as the complex envelope of the 
band-pass signal (a low-pass equivalent signal) 

• The complex envelope can be represented as 

– where
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dB Representation
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Decibel (dB)
• The decibel (dB) is a relative unit used to express the ratio of 

one value to another on a logarithmic scale. 

• It can be used to express an absolute value. In this case, it 
expresses the ratio of a value to a fixed reference value. 

– A suffix indicating the reference value is appended after dB

– e.g., dBW, dBm, dBV

• The definition of dB is

• The representation of dB can be used to expression a very large 
value or a very small (closed to 0) value

– 100 dB = 10000000000

– −100 dB = 0.0000000001

– 2 = 3dB; 3 = 4.771dB; 5 = 7dB

 (dB) 1010 logX X 
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Decibel (dB) (Cont.)
• Someone may question that there seems to be another 

expression of dB defined as 

– No! There is only one expression of dB: 

• In electrical circuits, power dissipation is proportional to the 
square of voltage or current when the impedance is constant.

– The power gain level (in dB) is expressed as

• However, the expression is due to 

 (dB) 1020 logX X 

 (dB) 1010 logX X 
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   

 
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Insertion Loss (Path Loss)
• P0: the power delivered to a load when it is connected directly 

to the source (linear scale, W, mW, …)

• PL: the power delivered to a load from a source via a channel

• Insertion loss LI = 10 log10 (P0 / PL) dB

• x  y dB  y = 10 log10 x, e.g., 20 = 13 dB

Source Channel Load

LI
PL

Source Load
P0
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Insertion Loss (Path Loss) (Cont.)
• For example, if the transmit power is P(dB) = 0 dBW (i.e., 1W), 

the channel bandwidth is B = 100 KHz, and the noise power 
spectral density is N0/2 with N0 = –110 dBW/Hz. 

• If the propagation loss of the channel is L = 40 dB, the received 
signal power is 

• The symbol energy is 

• The received signal SNR is 

 r(dB) 10 (dB) (dB)10 log 40 dBWP P L P L     
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Representation of Probability of Error

dB scale

dB scale


