# 無線通訊系統 (Wireless Communications Systems)

國立清華大學電機系暨通訊工程研究所 蔡育仁 台達館 821 室 Tel: 62210 E-mail: yrtsai@ee.nthu.edu.tw

Prof. Tsai

# **Chapter 2 Propagation Effects**

# Path Loss and Shadowing



# Fast Multipath Fading

- The variation of propagation channel results in the change of the received signal strength
- For the same propagation environment, **different frequency components** may experience different fading characteristics





# Basic Concepts of Propagation Modeling

Prof. Tsai



- **Reciprocity Theorem :** If a propagation path exists, it carries energy equally well in **both directions**
- An MS in a typical macrocellular environment is usually surrounded by local scatterers
  - The plane waves arrive from many directions without a direct LOS (Line-Of-Sight) component



## Radio Propagations (Cont.)

- MS in a macrocellular system: isotropic scattering
  - The arriving plane waves arrive from all directions with equal probability
  - In general, no direct LOS path exists between an MS and the BS
- **BS** in a **macrocellular** system: relatively free from local scatterers
  - The plane waves tend to arrive from one general direction
  - The cell radius is from 0.5km to several kilometers
- In a **microcellular** environment:
  - The BS antennas are only moderately elevated above the local scatterers
  - The cell radius is from 100m to several hundred meters
  - A direct LOS path may exist between an MS and the desired BS

Prof. Tsai

Doppler (Frequency) Shift

- Doppler (frequency) shift is introduced for a mobile user
  - MS velocity: v
  - The **incidence angle** of the incoming wave:  $\theta_n(t)$

$$f_{D,n}(t) = f_m \cos \theta_n(t)$$
 Hz

- where  $f_m = v/\lambda_c$  and  $\lambda_c$  is the wavelength



#### Multipath Fading Channel

• Consider the transmission of the band-pass signal s(t):  $s(t) = \Re \left\{ \tilde{s}(t)e^{j2\pi f_c t} \right\}$ 

 $-\widetilde{s}(t)$  is the complex envelope and  $f_c$  is the carrier frequency

• The received band-pass signal is:

Prof. Tsai

### Multipath Fading Channel (Cont.)

• The received complex low-pass signal (for an *N*-path channel):

$$\widetilde{r}(t) = \sum_{n=1}^{N} \alpha_n(t) \ e^{-j2\pi \left[ \left( f_c + f_{D,n}(t) \right) \tau_n(t) - f_{D,n}(t) t \right]} \ \widetilde{s}\left( t - \tau_n(t) \right)$$

 $- \alpha_n(t)$  is the amplitude gain and  $\tau_n(t)$  is the time delay

$$\Rightarrow \tilde{r}(t) = \sum_{n=1}^{N} \alpha_n(t) \ e^{-j\phi_n(t)} \ \tilde{s}(t - \tau_n(t))$$

- The phase associated with the *n*-th path is

$$\phi_n(t) = 2\pi \left[ \left( f_c + f_{D,n}(t) \right) \tau_n(t) - f_{D,n}(t) t \right]$$

The phase can be regarded as a uniformly random phase
 Since f<sub>c</sub> × τ<sub>n</sub>(t) >> 1

### Channel Modeling as a Filter

• The channel is modeled as a time-variant linear filter

$$g(\tau,t) = \sum_{n=1}^{N} \alpha_n(t) e^{-j\phi_n(t)} \delta(\tau - \tau_n(t))$$

- A small change in path delay  $\tau_n(t)$  causes a large change in phase  $\phi_n(t)$  (due to a very large  $f_c + f_{D,n}(t)$ )
- Random amplitude and phase for each received path



#### Channel Modeling as a Filter (Cont.)

• If multiple impulse signals are transmitted at  $t_0, t_1, \ldots$ 



### Freq.-Selective & -Non-Selective Fading

 Frequency-non-selective: if the differential of path delays τ<sub>i</sub> - τ<sub>j</sub> are small compared to the duration of a modulated symbol, τ<sub>n</sub> are all approximately equal to τ̂

$$g(\tau,t) \cong \sum_{n=1}^{N} \alpha_n(t) e^{-j\phi_n(t)} \delta(\tau - \hat{\tau}) = g(t) \delta(\tau - \hat{\tau})$$

**Frequency-non-selective** 



#### Freq.-Selective & -Non-Selective Fading (Cont.)

• Frequency-selective: if the differential of path delays  $\tau_i - \tau_j$  are comparable to the duration of a modulated symbol



# Frequency-Non-Selective Multipath Fading

#### • Frequency-non-selective multipath fading:

- Narrow-band transmission
- Signal bandwidth << coherence bandwidth</li>
- The inverse of the signal bandwidth >> time spread of the propagation path delay
- Modulated symbol duration >> time spread of the propagation path delay
- All frequency components experience <u>the same random</u> <u>attenuation and a linear phase shift</u>
- Very little or no distortion  $\Rightarrow$  <u>**no ISI**</u>, do not need equalization



#### Frequency-Selective Multipath Fading

#### • Frequency-selective multipath fading:

- Wide-band transmission
- Signal bandwidth  $\geq \approx$  coherence bandwidth
- The inverse of the signal bandwidth ≈< the time spread of the propagation path delay</li>
- Modulated symbol (or chip) duration ≈< time spread of the propagation path delay</li>
- Different frequency components may experience <u>different</u> random attenuation and a non-linear phase shift
- Significant distortion  $\Rightarrow$  ISI, equalization or RAKE is need





# Frequency-Non-Selective (Flat) Multipath Fading

# Freq.-Non-Selective Multipath Fading

- At any time t, the random phase  $\phi_n(t)$  may result in the **constructive** or **destructive** addition of the N components
- If the differential of path delays τ<sub>i</sub> τ<sub>j</sub> is small compared to the duration of a modulated symbol, for all *i* ≠ *j*, all the path delays are approximately equal to τ̂
- Since the carrier frequency is very high, small differences in the path delays will correspond to large differences in φ<sub>n</sub>(t) ⇒ The received signal still experiences fading
- The channel impulse response can be approximated as

$$g(\tau,t) = \sum_{n=1}^{N} \alpha_n(t) e^{-j\phi_n(t)} \delta(\tau - \tau_n(t)) \approx g(t) \delta(\tau - \hat{\tau})$$

• The corresponding channel transfer function is Impulse response

$$T(t,f) = \mathbb{F}\{g(t,\tau)\} = \mathbb{F}\{g(t)\delta(\tau-\hat{\tau})\} = \underline{g(t)}e^{-j2\pi f\hat{\tau}}$$

Prof. Tsai

Freq.-Non-Selective Multipath Fading (Cont.)

- The amplitude response is |T(t, f)| = |g(t)|
- All frequency components in the received signal are subject to the same complex gain g(t)
  - The phase is linear with respect to  $f \Rightarrow$  constant delay for all  $f \Rightarrow$  no distortion
- The received signal is said to exhibit **flat fading** 
  - It holds for the corresponding frequency components only, i.e., the frequency components in the transmission bandwidth

# Doppler Power Spectrum

Prof. Tsai

#### **Received Signal Correlation**

- By assuming the transmission of an unmodulated carrier
- Narrow band signal The received band-pass signal is  $r(t) = \operatorname{Re}\left\{ \begin{array}{c} \tilde{r}(t)e^{j2\pi f_{c}t} \\ \tilde{r}(t) = \sum_{n=1}^{N} \alpha_{n}(t) e^{-j\phi_{n}(t)} \tilde{s}(t - \tau_{n}(t)) = \sum_{n=1}^{N} \alpha_{n}(t) e^{-j\phi_{n}(t)} \end{array} \right.$ Freq.-Not **Freq.-Non-Selective**  $=g_I(t)+jg_O(t)$ - where  $\frac{g_I(t) = \sum_{n=1}^N \alpha_n(t) \cos \phi_n(t)}{e^{j\theta} = \cos \theta + j \sin \theta} \frac{g_Q(t) = -\sum_{n=1}^N \alpha_n(t) \sin \phi_n(t)}{e^{j\theta} = \cos \theta + j \sin \theta}$

The band-pass signal can be expressed as

$$r(t) = g_I(t) \cos 2\pi f_c t - g_Q(t) \sin 2\pi f_c t$$

#### Received Signal Correlation (Cont.)

It is assumed that these random processes are all wide sense stationary (WSS)

$$-f_{D,n}(t) = f_{D,n}, \ \alpha_n(t) = \alpha_n, \text{ and } \tau_n(t) = \tau_n$$
• The autocorrelation of  $r(t)$ : (for an arbitrary time difference  $\tau$ )  
 $\phi_{rr}(\tau) = E[r(t)r(t+\tau)]$ 
• Auto-correlation  
time separation
•  $= E[g_I(t)g_I(t+\tau)]\cos 2\pi f_c \tau - E[g_Q(t)g_I(t+\tau)]\sin 2\pi f_c \tau$   
 $= \phi_{g_Ig_I}(\tau)\cos 2\pi f_c \tau - \phi_{g_Qg_I}(\tau)\sin 2\pi f_c \tau$ 

$$\int \phi_{g_Ig_I}(\tau) = \phi_{g_Qg_Q}(\tau);$$
 $\phi_{g_Ig_Q}(\tau) = -\phi_{g_Qg_I}(\tau)$ 

$$\int \sin x \sin y = \frac{1}{2}[\cos(x-y) - \cos(x+y)]$$
 $\sin x \cos y = \frac{1}{2}[\cos(x-y) + \cos(x+y)]$ 
 $\sin x \cos y = \frac{1}{2}[\sin(x+y) + \sin(x-y)]$ 
 $\cos x \sin y = \frac{1}{2}[\sin(x+y) - \sin(x-y)]$ 

Prof. Tsai

# Received Signal Correlation (Cont.) • According to $\phi_n(t) = 2\pi \left[ \left( f_c + f_{D,n}(t) \right) \tau_n(t) - f_{D,n}(t) t \right], \tau_n(t) \approx \hat{\tau}$ and $g_I(t) = \sum_{n=1}^N \alpha_n(t) \cos \phi_n(t)$ , we have Different paths are uncorrelated for uniform random phase $\phi_{g_I g_I}(\mathbf{\tau}) = E[g_I(t)g_I(t+\mathbf{\tau})] = \Omega_p \times E_{\hat{\tau},\theta_n}[\cos\phi_n(t)\cos\phi_n(t+\mathbf{\tau})]$ $= \frac{\Omega_p}{2} \left\{ E_{\hat{\underline{\tau}},\theta_n} \left[ \frac{x - y}{\cos 2\pi f_{D,n} \tau} \right] + E_{\hat{\underline{\tau}},\theta_n} \left[ \cos 2\pi \left[ 2(f_c + f_{D,n}) \hat{\tau} - 2f_{D,n} t - f_{D,n} \tau \right] \right] \right\}$ $= \frac{\Omega_p}{2} E_{\theta_n} \Big[ \cos \big( 2\pi f_m \tau \cos \theta_n \big) \Big] + 0 \quad \big( \because f_c \hat{\tau} \gg 1 \text{ and } f_{D,n}(t) = f_m \cos \theta_n(t) \big) \\ - \text{ where the total received envelope power is } \qquad \phi_n(t) \text{ is uniformly} \Big]$ $\Omega_p = E\left[g_I^2(t)\right] + E\left[g_Q^2(t)\right] = \sum_{n=1}^{N} E\left[\alpha_n^2\right] \quad \text{distributed over } [-\pi, \pi]$ Similarly, we have $\phi_{g_I g_Q}(\mathbf{\tau}) = E_{\hat{\tau}, \theta_n} \left[ g_I(t) g_Q(t + \mathbf{\tau}) \right] = \frac{\Omega_p}{2} E_{\theta_n} \left[ \sin\left(2\pi f_m \mathbf{\tau} \cos \theta_n\right) \right]$

Prof. Tsai

#### Received Signal Correlation – IS

For isotropic scattering (IS):  $\theta_n$  is uniformly distributed over  $\cos x$  $[-\pi, \pi]$ **Even function** 1

 $- J_0(x)$  is the zero-order Bessel function of the first kind



Prof. Tsai





### Received Signal Spectrum – IS (Cont.)

• The power spectral density of  $g_I(t)$  is

$$S_{g_{I}g_{I}}(f) = \mathbb{F}\left\{\phi_{g_{I}g_{I}}(\boldsymbol{\tau})\right\} = \begin{cases} \frac{\Omega_{p}}{2\pi f_{m}} \frac{1}{\sqrt{1 - \left(f/f_{m}\right)^{2}}} & |f| \leq f_{m} \\ 0 & \text{otherwise} \end{cases}$$

• The received complex envelope of r(t) is  $\tilde{r}(t) = g(t) = g_1(t) + jg_0(t)$ 

$$\Rightarrow \phi_{gg}(\mathbf{\tau}) = \frac{1}{2} E \Big[ g^*(t) g(t + \mathbf{\tau}) \Big] = \phi_{g_I g_I}(\mathbf{\tau}) + j \phi_{g_I g_Q}(\mathbf{\tau})$$

• The power spectral density of *g*(*t*) (**Doppler power spectrum**) is

$$S_{gg}(f) = S_{g_I g_I}(f) + j S_{g_I g_Q}(f)$$

Prof. Tsai

#### Received Signal Spectrum – IS (Cont.)

- For the received band-pass signal r(t), we have  $\phi_{rr}(\mathbf{\tau}) = \Re \left[ \phi_{gg}(\mathbf{\tau}) e^{j2\pi f_c \tau} \right]$
- Since  $\phi_{g_I g_Q}(\tau) = 0$ , we have the PSD of r(t) as

$$S_{rr}(f) = \frac{1}{2} \Big[ S_{gg}(f - f_c) + S_{gg}(-f - f_c) \Big]$$
  
=  $\frac{1}{2} \Big[ S_{g_I g_I}(f - f_c) + S_{g_I g_I}(-f - f_c) \Big]$   
=  $\frac{\Omega_p}{4\pi f_m} \frac{1}{\sqrt{1 - (|f - f_c|/f_m)^2}}, \quad |f - f_c| \le f_m$ 

•  $S_{rr}(t)$  is limited to  $|f - f_c| \le f_m$ 



#### Question

- Question:
  - Why the power spectral density of an unmodulated carrier is limited to  $|f-f_c| \le f_m$ ?
  - For a transmission with the transmission bandwidth *B*, what is the frequency range of the received power spectrum?



Prof. Tsai

### Received Signal Spectrum with LOS – IS

If an LOS or a strong specular component is present in the received signal and arrives at angle θ<sub>0</sub>: Ricean / Rician fading



#### Received Signal Correlation (Microcellular)

- In microcellular environment, the plane waves may be channeled by the buildings along the streets and arrive at the receiver from just one direction
  - The scattering is **non-isotropic**

$$p(\theta) = \begin{cases} \frac{\pi}{4|\theta_m|} \cos(\frac{\pi}{2} \times \frac{\theta}{\theta_m}), & |\theta| \le |\theta_m| \le \pi/2 \\ 0, & \text{elsewhere} \end{cases}$$
  
=  $\theta_m$ : the directivity of the incoming waves  
BS

# Received Signal Correlation (Microcell) (Cont.)

• According to

$$\phi_{g_{I}g_{I}}(\mathbf{\tau}) = \frac{\Omega_{p}}{2} E_{\theta_{n}} \Big[ \cos \Big( 2\pi f_{m} \mathbf{\tau} \cos \theta_{n} \Big) \Big]$$
$$\phi_{g_{I}g_{Q}}(\mathbf{\tau}) = \frac{\Omega_{p}}{2} E_{\theta_{n}} \Big[ \sin \Big( 2\pi f_{m} \mathbf{\tau} \cos \theta_{n} \Big) \Big]$$

• We have

$$\phi_{g_{I}g_{I}}(\mathbf{\tau}) = \frac{\Omega_{p}}{2} \int_{-\pi}^{\pi} \cos(2\pi f_{m}\mathbf{\tau}\cos\theta) \underline{p(\theta)} \, d\theta \not \neq \frac{\Omega_{p}}{2} J_{0}(2\pi f_{m}\mathbf{\tau})$$
$$\phi_{g_{I}g_{Q}}(\mathbf{\tau}) = \frac{\Omega_{p}}{2} \int_{-\pi}^{\pi} \sin(2\pi f_{m}\mathbf{\tau}\cos\theta) \underline{p(\theta)} \, d\theta \not \neq 0$$

Prof. Tsai

35

# Fading Characteristics (Received Envelope/Power Distribution)

# Rayleigh Fading

- **Rayleigh Fading:** the received complex low-pass signal is modeled as a complex Gaussian random process
  - $-g_I(t)$  and  $g_O(t)$  are independent zero-mean Gaussian RVs
  - The received **complex envelope**  $\alpha(t) = |g(t)|$  has a Rayleigh distribution

$$p_{\alpha}(x) = \frac{x}{\sigma^2} \exp\left[-\frac{x^2}{2\sigma^2}\right], \quad x \ge 0 \qquad g_I(t) = \sum_{n=1}^N \alpha_n(t) \cos\phi_n(t)$$
$$g_Q(t) = -\sum_{n=1}^N \alpha_n(t) \sin\phi_n(t)$$

• The average power is

$$E[\alpha^2] = \Omega_p = 2\sigma^2$$

• The squared-envelope (power)  $\alpha^2(t) = |g(t)|^2$  has an exponential distribution

$$p_{\alpha^2}(x) = \frac{1}{\Omega_p} \exp\left[-\frac{x}{\Omega_p}\right], \quad x \ge 0$$

Prof. Tsai



# **Ricean Fading**

- Ricean Fading: the received complex low-pass signal contains a LOS or a strong specular component
  - $-g_{l}(t)$  and  $g_{0}(t)$  are independent Gaussian RVs with **non-zero mean**  $m_I(t)$  and  $m_O(t)$  ( $m_I(t)$  and  $m_O(t)$  depend on the LOS and  $\theta_0$ )
  - The complex envelope  $\alpha(t) = |g(t)|$  has a Ricean distribution

$$p_{\alpha}(x) = \frac{x}{\sigma^2} \exp\left[-\frac{x^2 + s^2}{2\sigma^2}\right] I_0\left(\frac{xs}{\sigma^2}\right) \quad x \ge 0$$

Power of the

LOS component  $s^{2} = m_{I}^{2}(t) + m_{O}^{2}(t), \qquad K = s^{2}/2\sigma^{2}$ 

- The modified Bessel function of the first kind of zero order

$$I_0(x) = \int_0^{2\pi} \exp(x\cos\psi) \,d\psi / 2\pi$$

- Rice factor K = 0: Rayleigh fading
- Rice factor  $K = \infty$ : the channel does not exhibit fading

Prof. Tsai

Ricean Fading (Cont.)

The average power is

$$E[\alpha^{2}] = \Omega_{p} = s^{2} + 2\sigma^{2}$$
$$s^{2} = \frac{K\Omega_{p}}{K+1}, \qquad 2\sigma^{2} = \frac{\Omega_{p}}{K+1}$$

The squared-envelope  $\alpha^2(t) = |g(t)|^2$  has a non-central chi-square distribution

$$p_{\alpha^2}(x) = \frac{(K+1)}{\Omega_p} \exp\left[-K - \frac{(K+1)x}{\Omega_p}\right] I_0\left(2\sqrt{\frac{K(K+1)x}{\Omega_p}}\right), \quad x \ge 0$$

The phase is not uniformly distributed over  $[-\pi, \pi]$  for  $K \neq 0$  $\phi(t) = \tan^{-1} (x_0(t) / x_1(t))$ 

- For K = 0: Rayleigh fading  $p_{\phi}(x) = 1/2\pi$ ,  $-\pi \le x \le \pi$ 



Prof. Tsai

# Nakagami Fading

- Nakagami Fading: provides a closer match to some experimental data
  - The received complex envelope  $\alpha(t) = |g(t)|$  has a Nakagami distribution

$$p_{\alpha}(x) = \frac{2m^{m}x^{2m-1}}{\Gamma(m)\Omega_{p}^{m}} \exp\left[-\frac{mx^{2}}{\Omega_{p}}\right], \quad m \ge \frac{1}{2}$$

• where  $\Gamma(m)$  is the Gamma function defined as

$$\Gamma(m) = \int_0^\infty u^{m-1} e^{-u} du$$
  
= (m-1)!, if m is a positive integer

- -m = 1: Rayleigh fading
- -m = 1/2: one-sided Gaussian

 $-m = \infty$ : no fading

Prof. Tsai

43

#### Nakagami Fading (Cont.)

- Nakagami distribution can model fading conditions that are either more or less severe than Rayleigh fading
- Ricean fading can be closely approximated by

$$K = \frac{\sqrt{m^2 - m}}{m - \sqrt{m^2 - m}} \qquad m \ge 1; \qquad m = \frac{(K+1)^2}{(2K+1)}$$

- The Nakagami distribution often leads to closed form analytical expressions
- The squared-envelope  $\alpha^2(t) = |g(t)|^2$  has a Gamma density

$$p_{\alpha^2}(x) = \left(\frac{m}{\Omega_p}\right)^m \frac{x^{m-1}}{\Gamma(m)} \exp\left[-\frac{mx}{\Omega_p}\right]$$



Nakagami and Ricean Distributions



#### Envelope Correlation

• The autocorrelation of the envelope  $\alpha(t) = |g(t)|$ :  $\phi_{\alpha\alpha}(\tau) = E[\alpha(t)\alpha(t+\tau)] = \frac{\pi}{2} |\phi_{gg}(0)| F[-\frac{1}{2}, -\frac{1}{2}; 1, \frac{|\phi_{gg}(\tau)|^2}{|\phi_{gg}(0)|^2}]$   $- \text{ where } |\phi_{gg}(\tau)|^2 = \phi_{g_Ig_I}^2(\tau) + \phi_{g_Ig_Q}^2(\tau)$   $= \phi_{g_Ig_I}^2(\tau) \quad \text{(isotropic scattering)}$   $F[-\frac{1}{2}, -\frac{1}{2}; 1, x] = 1 + \frac{1}{4}x + \frac{1}{64}x^2 + \cdots \text{(Hypergeometric Function)}$   $\phi_{\alpha\alpha}(\tau) \approx \frac{\pi}{2} |\phi_{gg}(0)| [1 + \frac{1}{4} \frac{|\phi_{gg}(\tau)|^2}{|\phi_{gg}(0)|^2}]$ • The autocovariance function:  $\mu_{\alpha\alpha}(\tau) = E[\alpha(t)\alpha(t+\tau)] - E[\alpha(t)]E[\alpha(t+\tau)]$  $= \frac{\pi}{8|\phi_{gg}(0)|} |\phi_{gg}(\tau)|^2 = \frac{\pi\Omega_p}{16}J_0^2(2\pi f_m \tau)$ 

Prof. Tsai



# Envelope Level Crossing Rate and Average Envelope Fade Duration

Prof. Tsai

# The Impact of Multipath Fading

- The receive performance is severely degraded in a **deep fade region**.
  - For example, the received signal level is below a threshold R
- We care the following two things:
  - How often will deep fading occur?
    - Envelope Level Crossing Rate
  - How long will the deep fading last?
    - Average Envelope Fade Duration



# Envelope Level Crossing Rate

- $L_R$ : the rate at which the envelope crosses level R in the positive (or negative) going direction
- $\dot{\alpha}$ : the envelope slope
  - $\dot{\alpha}$  is either **positive** (for positive going direction) or **negative** (for negative going direction)
- $p(\alpha, \dot{\alpha})$ : the join pdf of  $\alpha$  and  $\dot{\alpha}$
- *dt*: the observation time interval
- For given values of  $\alpha = R$  and  $\dot{\alpha}$ , the probability is



### Envelope Level Crossing Rate (Cont.)

• The expected amount of time spent in the interval  $(R, R + d\alpha)$  for given values of  $\dot{\alpha}$  and dt is



- The time required to cross the interval  $d\alpha$  once for a given  $\dot{\alpha}$  is  $d\alpha/\dot{\alpha}$ 
  - The time spent in  $(R, R + d\alpha)$  for one positive going direction cross



#### Envelope Level Crossing Rate (Cont.)

• The expected number of crossings of the envelope  $\alpha$  within the interval  $(R, R + d\alpha)$  for a given  $\dot{\alpha}$  is

 $(p(R,\dot{\alpha}) \, d\alpha \, d\dot{\alpha} \, dt) / (d\alpha / \dot{\alpha}) = \dot{\alpha} \, p(R,\dot{\alpha}) \, d\dot{\alpha} \, dt$ 

• The expected number of crossings in a time interval T for a given  $\dot{\alpha}$  is

$$\int_0^T \dot{\alpha} \, p(R,\dot{\alpha}) \, d\dot{\alpha} \, dt = \dot{\alpha} \, p(R,\dot{\alpha}) \, d\dot{\alpha} \, T$$

• The excepted number of positive going direction crossings:

$$N_R = T \int_0^\infty \dot{\alpha} p(R, \dot{\alpha}) d\dot{\alpha}$$
 All slopes are counted.

• The envelope level crossing rate:

$$L_R = \int_0^\infty \dot{\alpha} \, p(R, \dot{\alpha}) \, d\dot{\alpha}$$

Prof. Tsai

Envelope Level Crossing Rate – Ricean

• For Ricean fading:

$$p(\alpha, \dot{\alpha}) = \sqrt{\frac{1}{2\pi b_2}} \exp\left\{-\frac{\dot{\alpha}^2}{2b_2}\right\} \times \frac{\alpha}{b_0} \exp\left\{-\frac{(\alpha^2 + s^2)}{2b_0}\right\} I_0\left(\frac{\alpha s}{b_0}\right) = p(\dot{\alpha})p(\alpha)$$

- where  $b_2 = b_0 (2\pi f_m)^2/2$  and  $2b_0$  is the power of the scatter component of the received signal
- The envelope level crossing rate is

$$L_{R} = \sqrt{2\pi(K+1)} f_{m} \rho e^{-K - (K+1)\rho^{2}} I_{0} \left( 2\rho \sqrt{K(K+1)} \right)$$
  
- where  $\rho = \frac{R}{\sqrt{\Omega_{p}}} = \frac{R}{R_{rms}}$   
 $-\sqrt{\Omega_{p}} \triangleq R_{rms}$ : the rms envelope level

### Envelope Level Crossing Rate – Rayleigh

• For Rayleigh fading (K = 0):

$$L_R = \sqrt{2\pi} f_m \rho \, e^{-\rho^2}$$

Maximum LCR: around *ρ* = 0 dB (nearly independent of *K*)
 – For Rayleigh fading channel:

$$\frac{dL_R}{d\rho} = \sqrt{2\pi} f_m \left( e^{-\rho^2} - 2\rho^2 e^{-\rho^2} \right) = \sqrt{2\pi} f_m \left( 1 - 2\rho^2 \right) e^{-\rho^2} = 0$$
  
$$\Rightarrow \rho = 1/\sqrt{2}$$

Prof. Tsai





#### Average Envelope Fade Duration

- Consider a very long observation time interval T
- The probability that the received envelope level is less than R can be expressed as

Can be obtained based on the envelope distribution, i.e., Rayleigh/Ricean distribution  $P(\alpha \le R) = \frac{1}{T} \sum_{i} t_i$ 

• The average envelope **fade duration** is

**Fotal number of**  
**level crossings** 
$$\bar{t} = \frac{1}{TL_R} \sum_i t_i = \frac{P(\alpha \le R)}{L_R}$$

- $1/L_R$  is the mean time interval between two adjacent levelcrossings
- $P(\alpha \le R)$ : the probability of  $\alpha \le R$
- Only one interval less than R in the  $1/L_R$  duration

 $1/L_R$ 

Average Envelope Fade Duration (Cont.)

- **Ricean:**  $P(\alpha \le R) = \int_0^R p(\alpha) d\alpha = 1 Q\left(\sqrt{2K}, \sqrt{2(K+1)\rho^2}\right)$ 
  - where Q(a,b) is the Marcum Q function

$$Q(a,b) \triangleq \int_{b}^{\infty} \alpha \exp\left[-\frac{1}{2}\left(\alpha^{2}+a^{2}\right)\right] I_{0}(a\alpha) \, d\alpha$$

• The average envelope fade duration is

$$\bar{t} = \frac{1 - Q\left(\sqrt{2K}, \sqrt{2(K+1)\rho^2}\right)}{\sqrt{2\pi(K+1)} f_m \rho e^{-K - (K+1)\rho^2} I_0(2\rho\sqrt{K(K+1)})}$$

- **Rayleigh:**  $P(\alpha \le R) = \int_0^R p(\alpha) \, d\alpha = 1 e^{-\rho^2}$
- The average envelope fade duration is

$$\overline{t} = \frac{e^{\rho^2} - 1}{\rho f_m \sqrt{2\pi}}, \qquad L_R = \sqrt{2\pi} f_m \rho e^{-\rho^2}$$

Prof. Tsai

#### Average Envelope Fade Duration (Cont.)

• The average level crossing rate, zero crossing rate and average fade duration all depend on the velocity of MS

$$-f_m = v/\lambda_c$$
 and 1 mile = 1.609 km

- Example:

$$v = 60 \text{ mile/hr} = 97 \text{ km/hr} = 27 \text{ m/sec};$$
  
 $f_c = 900 \text{ MHz} \Rightarrow f_m = 81 \text{ Hz}$ 

- Rayleigh:

$$L_R = 74$$
 fades/sec at  $\rho = 0$  dB;  $\bar{t} = 8.5$  ms  
 $L_R = 2.0$  fades/sec at  $\rho = -20$  dB;  $\bar{t} = 50 \ \mu$ s



# **Spatial Correlation**

# Spatial Correlation

- **Diversity reception:** use two separate receiving antennas to provide uncorrelated diversity branches
- The antenna separation:  $\ell$ 
  - By distance-time transformation

$$\ell = v\tau, \quad \ell/\lambda_c = v\tau/\lambda_c = f_m \tau$$

- For the case of **isotropic scattering**:
  - Autocorrelation:  $\phi_{g_1g_1}(\ell) = \frac{\Omega_p}{2} J_0(2\pi \ell/\lambda_c)$
  - Autocovariance:  $\mu_{\alpha\alpha}(\ell) = \frac{\pi \Omega_p}{16} J_0^2 (2\pi \ell / \lambda_c)$
- The normalized envelope autocovariance is zero at  $\ell = 0.38\lambda_c$ 
  - Less than 0.3 for  $\ell > 0.38\lambda_c$

Prof. Tsai





# Spatial Correlation (Cont.)

- For an MS (isotropic scattering), the antenna elements should space about **a half-wavelength apart**
- For a BS, the antenna elements separate about  $20\lambda_c$  to obtain a correlation of about 0.7
  - The location of BS antennas is highly above the buildings
  - The arriving plane waves at the BS tend to be concentrated in a narrow angle of arrival (non-isotropic scattering)
  - The two antennas located at the BS will view the MS from only a slightly different angle
  - The spatial correlation is higher than isotropic scattering
- Another scheme of diversity reception: polarization reception





Prof. Tsai

# Question

- For modern wireless cellular systems, the allocated frequency bands are around 900 MHz and 2 GHz.
- Question:
  - Is it possible to implement the spatial diversity reception in an MS? Why?
  - Is it possible to implement the spatial diversity reception in a BS? Why?

Prof. Tsai

69

# Frequency-Selective Multipath Fading

### **Transmission Functions**

- The multipath fading channels can be modeled as **time-variant linear filters**
- $\Rightarrow$  Four transmission functions are used for representation
  - Input delay-spread function  $g(\tau, t)$
  - Output Doppler-spread function H(f, v)
  - Time-variant transfer function T(f, t)
  - Delay Doppler-spread function  $S(\tau, \nu)$
- The parameters:
  - *t*: time domain
  - -f: frequency domain
  - $-\tau$ : time delay
  - v: Doppler frequency shift

Prof. Tsai

71

#### Transmission Functions (Cont.)

- The time delay (delay spread) determines the channel frequency response
  - The time delay  $\tau$  can be viewed as the impulse response of the filter  $\Rightarrow$  corresponding to the frequency response of the filter
  - The distributions of  $\tau$  and f vary with time t
  - $\tau$  relates to f in different domains
- The varying of time corresponds to the change in the scattering environment (the change of Doppler frequency shift)
  - -t relates to v in different domains
- $t \leftrightarrow v$
- $\tau \leftrightarrow f$
#### Transmission Functions (Cont.)

$$g(\tau, t) \stackrel{Fourier}{\Leftrightarrow} T(f, t)$$

$$T(f, t) \stackrel{Fourier}{\Leftrightarrow} H(f, v)$$

$$S(\tau, v) \stackrel{Fourier}{\Leftrightarrow} H(f, v)$$

$$Fourier}$$

$$g(\tau,t) \stackrel{Fourier}{\underset{t\leftrightarrow v}{\Leftrightarrow}} S(\tau,v)$$

Prof. Tsai

## Classification of Channels

- Three channel types:
  - Wide Sense Stationary (WSS) channel
  - Uncorrelated Scattering (US) channel
  - Wide Sense Stationary Uncorrelated Scattering (WSSUS) channel

## Wide Sense Stationary (WSS) Channel

- The fading statistics **remain constant** over short periods of time
- The channel correlation functions depend on the **time difference**  $\Delta t$
- *t* ↔ *v*: the fading characteristics are constant in the time domain ↔ a delta function in the correlation of Doppler frequency shift
  - WSS channels give rise to scattering with uncorrelated Doppler shifts
  - The attenuations and phase shifts, associated with signal components having different Doppler shifts, are uncorrelated
- The fading statistics remain constant
- Signal components having different Doppler shifts are uncorrelated

Prof. Tsai

75

#### Uncorrelated Scattering (US) Channel

- The attenuations and phase shifts, associated with the paths of **different delays**, are uncorrelated
- τ ↔ f: the fading characteristics are uncorrelated (delta function) in the delay time domain ↔ constant characteristics in the frequency domain
  - WSS in the frequency variable
  - The correlation functions depend on the frequency difference  $\Delta f$
- WSS in the frequency variable
- Signal components having different delays are uncorrelated

## WSSUS Channel

- Wide Sense Stationary Uncorrelated Scattering Channel
- The channel displays uncorrelated scattering in both the **timedelay** and **Doppler shift**
- Most of the radio channels can be modeled as WSSUS channels



## Multipath Intensity Profile

- For WSSUS, the autocorrelation function of  $g(\tau, t)$ :  $\phi_g(\Delta t; \tau)$
- Multipath intensity profile: For  $\Delta t = 0$ ,  $\phi_g(0; \tau) = \phi_g(\tau)$  shows the power profile
  - The average power at channel output of time delay  $\tau$
  - It can be viewed as the scattering function averaged over all Doppler shifts  $\int_{0}^{\infty} \tau \phi(\tau) d\tau$

• Average delay: 
$$\mu_{\tau} = \frac{\int_{0}^{\infty} \tau \phi_{g}(\tau) d\tau}{\int_{0}^{\infty} \phi_{g}(\tau) d\tau}$$
  
• RMS delay spread: 
$$\sigma_{\tau} = \sqrt{\frac{\int_{0}^{\infty} (\tau - \mu_{\tau})^{2} \phi_{g}(\tau) d\tau}{\int_{0}^{\infty} \phi_{g}(\tau) d\tau}}$$

#### Multipath Intensity Profile (Cont.)

• Middle profile:  $W_x$ 

- Contains x% of the total power in the profile

$$W_x = \tau_3 - \tau_1$$
$$\int_0^{\tau_1} \phi_g(\tau) d\tau = \int_{\tau_3}^{\infty} \phi_g(\tau) d\tau$$
$$\int_{\tau_1}^{\tau_3} \phi_g(\tau) d\tau = x\% \int_0^{\infty} \phi_g(\tau) d\tau$$

- Difference in delay:  $W_P$ 
  - The delay profile rises to a value *P* dB below the maximum value:  $\tau_1$
  - The delay profile drops to a value *P* dB below the maximum value:  $\tau_2$

$$W_P = \tau_2 - \tau_1$$

Prof. Tsai







# Multipath Intensity Profile (Cont.)

- The power delay profiles play a key role in determining the need of an adaptive equalizer
- If the delay spread exceeds 10% to 20% of the symbol duration
  An adaptive equalizer is required

Tx o

- Delay spread diminish  $(\downarrow)$  with the decrease in cell size  $(\downarrow)$
- The delay spread strongly depends on the environment (and frequency):
  - Urban, suburban, open area
  - Macrocellular:  $1 \sim 10 \ \mu s$
  - In building:  $30 \sim 60 ns$
- The value of delay spread impacts on the transmission rate
  - Under the considerations of **complexity** and **performance**

Prof. Tsai

Coherence Bandwidth

- For WSSUS, the autocorrelation function of T(t, f) is  $\phi_T(\Delta t; \Delta f)$ : spaced-frequency spaced-time correlation function
- For  $\Delta t = 0$ ,  $\phi_T(0; \Delta f) = \phi_T(\Delta f)$  measures the frequency correlation of the channel (depending on the multipath intensity profile)
- Coherence Bandwidth *B<sub>c</sub>*:
  - The smallest value of  $\Delta f$  for which  $\phi_T(\Delta f)$  equals some suitable correlation coefficient, such as 0.5
- $\phi_g(\tau)$  and  $\phi_T(\Delta f)$  are Fourier transform pair

$$B_c \propto \frac{1}{\sigma_{\tau}}$$

 $-\sigma_{\tau}$ : the rms delay spread

## Coherence Bandwidth (Cont.)

- For frequency non-selective fading:
  - The transmission bandwidth  $(1/T_s)$  is smaller than  $B_c$
  - The symbol duration  $T_s >> \sigma_{\tau}$
- For frequency selective fading:
  - The transmission bandwidth  $(1/T_s)$  is larger than or equivalent to  $B_c$
  - The symbol duration  $T_s \cong \sigma_\tau$  or  $T_s < \sigma_\tau$

Prof. Tsai

83

## Doppler Spread and Coherence Time

- For WSSUS, the autocorrelation function of H(v, f):  $\phi_H(v; \Delta f)$
- Doppler power spectral density: For  $\Delta f = 0$ ,  $\phi_H(v; 0) = \phi_H(v)$  shows the power density
  - The average power at the channel output as a function of Doppler frequency  $\nu$
- **Doppler Spread** *B<sub>d</sub>*:
  - The range of values over which  $\phi_{H}(v)$  is significant
- $\phi_{H}(v)$  and  $\phi_{T}(\Delta t)$  are Fourier transform pair
  - The inverse of the Doppler spread  $B_d$  gives a measure of the coherence time  $T_c$

$$T_c \approx \frac{1}{B_d}$$

## Doppler Spread and Coherence Time (Cont.)

- Coherence time (corresponding to the average fade duration):
  - Can be used to evaluate the performance of coding and interleaving techniques
  - Coding and interleaving  $\Rightarrow$  time diversity
- The duration of interleaving should much larger than the coherence time
- The Doppler spread and the coherence time depend directly on the **velocity** of a moving MS

Prof. Tsai

Fading Channel



#### Question

- Question:
  - For what characteristics will a channel have a flat frequency response?
  - For what characteristics will a channel have a large time domain fading correlation?
  - What decides the frequency-domain/time-domain fading characteristics?
- Small delay spread  $\Rightarrow$  Large coherence bandwidth  $B_c$ 
  - A simple propagation environment
- Small Doppler spread  $B_d \Rightarrow$  Large coherence time  $T_c$ - Low user mobility
- Frequency-domain: propagation environments
- Time-domain: user mobility

Prof. Tsai

87

# Laboratory Simulation

## Simulation of Multipath-Fading Channels

- The multipath fading channel simulator:
  - Filtered Gaussian Noise Method
  - Jakes' Method
  - Wide-band multipath-fading channels

Prof. Tsai

89

## Filtered Gaussian Noise Method

- Gaussian noise sources:
  - Zero mean: Rayleigh fade envelope
  - Non-zero mean: Ricean fade envelope
  - The two different noise sources must have the same PSD
- Low-pass filter: the output PSD should have the actual Doppler PSD of the multipath fading channel





## Filtered Gaussian Noise Method (Cont.)

• In order to approximate the Doppler spectrum of the multipath fading channel, a **high order filter** is required

 $\Rightarrow$  Long impulse response

- $\Rightarrow$ Significantly increase the run times
- Advantage: different paths are uncorrelated (if the Gaussian noise sources are uncorrelated)
- Disadvantage: hard to provide correct autocorrelation (a high order filter is required)
- If the noise sources have **constant** power spectral densities of  $\Omega_p/2$  and the low-pass filters have transfer function H(f)

- We have 
$$S_{g_{I}g_{I}}(f) = S_{g_{Q}g_{Q}}(f) = \frac{\Omega_{p}}{2} |H(f)|$$
  
 $S_{g_{I}g_{Q}}(f) = S_{g_{Q}g_{I}}(f) = 0$ 

#### Filtered Gaussian Noise Method (Cont.)

- Let  $g_{I,k} \equiv g_I(kT)$  and  $g_{Q,k} \equiv g_Q(kT)$  represent the real and imaginary parts of the complex envelope at epoch *k*, where *T* is the simulation step size
- Using a first-order low-pass digital filter

$$(g_{I,k+1},g_{Q,k+1}) = \zeta(g_{I,k},g_{Q,k}) + (1-\zeta)(w_{1,k},w_{2,k})$$

- where  $w_{1,k}$  and  $w_{2,k}$  are **independent** zero-mean Gaussian random variables

Prof. Tsai

#### Filtered Gaussian Noise Method (Cont.)

- The values of  $\sigma^2$  and  $\zeta$  should be specified
- For isotropic scattering, the ideal auto-correlation is

$$\phi_{g_{I}g_{I}}(n) = \frac{\Omega_{p}}{2} J_{0}(2\pi f_{m}nT)$$

$$u[n] = \begin{cases} +1, \quad n \ge 0\\ 0, \quad n < 0 \end{cases}$$

$$\phi_{g_{I}g_{I}}(n) = \frac{1-\zeta}{1+\zeta} \sigma^{2} \zeta^{|n|} = \frac{1-\zeta}{1+\zeta} \sigma^{2} \left(\zeta^{n}u[n] + \zeta^{-n}u[-n] - \delta[n]\right)$$

$$\zeta^{n}u[n] \longleftrightarrow \frac{1-\zeta}{1-\zeta} e^{-j2\pi ft}, \quad \zeta^{-n}u[-n] \longleftrightarrow \frac{1-\zeta}{1-\zeta} e^{j2\pi ft}, \quad \delta[n] \longleftrightarrow 1$$

$$S_{g_{I}g_{I}}'(f) = \mathbb{F}\left\{\phi_{g_{I}g_{I}}'(n)\right\} = \frac{(1-\zeta)^{2}\sigma^{2}}{1+\zeta^{2}-2\zeta} \cos 2\pi fT$$

Filtered Gaussian Noise Method (Cont.)

$$S'_{g_I g_I}(f) = \frac{(1-\zeta)^2 \sigma^2}{1+\zeta^2 - 2\zeta \cos 2\pi f T}$$

• Set the 3 dB point of  $S'_{g_Ig_I}(f)$  to  $f_m/4$ ,  $S'_{g_Ig_I}(f_m/4) = S'_{g_Ig_I}(0)/2$ we have

$$\zeta^{2} - 2\zeta \left(2 - \cos(\pi f_{m}T/2)\right) + 1 = 0$$

$$\zeta = 2 - \cos(\pi f_m T/2) - \sqrt{(2 - \cos(\pi f_m T/2))^2 - 1}$$

• To normalized the mean square envelope to  $\Omega_p$ 

$$\sigma_{g_{I}}^{2} = \frac{1-\zeta}{1+\zeta}\sigma^{2} = \frac{\Omega_{p}}{2} \implies \sigma^{2} = \frac{1+\zeta}{(1-\zeta)}\frac{\Omega_{p}}{2}$$

Prof. Tsai





#### Sum of Sinusoids Method

• From

$$g(t) = \sum_{n=1}^{N} \alpha_n(t) e^{-j\phi_n(t)}$$

$$\phi_n(t) = 2\pi \left\{ \left( f_c + f_{D,n}(t) \right) \tau_n(t) - f_{D,n}(t) t \right\}$$

- Assume that
  - The channel is stationary  $(f_{D,n}(t) = f_{D,n}, \tau_n(t) = \tau_n, \alpha_n(t) = \alpha_n)$
  - Equal strength of multipath components ( $\alpha_n = 1, \forall n$ )

$$g(t) = \sum_{n=1}^{N} e^{j2\pi \left[f_m t \cos \theta_n - (f_c + f_m \cos \theta_n)\tau_n\right]} = \sum_{n=1}^{N} e^{j(2\pi f_m t \cos \theta_n + \hat{\phi}_n)}$$

• For an isotropic scattering environment, we can assume that the **incident angles** are uniformly distributed

$$\theta_n = \frac{2\pi n}{N}, \quad n = 1, 2, \cdots, N$$

## Sum of Sinusoids Method (Cont.)



Prof. Tsai

Sum of Sinusoids Method (Cont.)

$$g(t) = \sqrt{2} \sum_{n=1}^{M} \left[ e^{j(2\pi f_m t \cos \theta_n + \hat{\phi}_n)} + e^{-j(2\pi f_m t \cos \theta_n + \hat{\phi}_{-n})} \right] + e^{j(2\pi f_m t + \hat{\phi}_N)} + e^{-j(2\pi f_m t + \hat{\phi}_{-N})}$$
  
• If we further adopt the constraint that  $\hat{\phi}_n = -\hat{\phi}_{-n}$ , we have  

$$cos(x + y) = cos(x) cos(y) - sin(x) sin(y)$$

$$sin(x + y) = sin(x) cos(y) + cos(x) sin(y)$$

$$2\pi f_n t = 2\pi f_m t \cos \theta_n$$

$$= \sqrt{2} \left\{ \left[ 2\sum_{n=1}^{M} \cos \beta_n \cos 2\pi f_n t + \sqrt{2} \cos \alpha \cos 2\pi f_m t \right] + j \left[ 2\sum_{n=1}^{M} \sin \beta_n \cos 2\pi f_n t + \sqrt{2} \sin \alpha \cos 2\pi f_m t \right] \right\}$$

$$- \text{ where } \alpha = \hat{\phi}_N = -\hat{\phi}_{-N}, \quad \beta_n = \hat{\phi}_n = -\hat{\phi}_{-n}$$
• Only (*M*+1) independent frequency oscillators are required

- There are (M+1) different frequencies

#### Sum of Sinusoids Method (Cont.)

• Considering the channel statistics

$$E\left[g_{I}^{2}(t)\right] = 2\sum_{n=1}^{M} \cos^{2} \beta_{n} + \cos^{2} \alpha = M + \cos^{2} \alpha + \sum_{n=1}^{M} \cos 2\beta_{n}$$
$$E\left[g_{Q}^{2}(t)\right] = 2\sum_{n=1}^{M} \sin^{2} \beta_{n} + \sin^{2} \alpha = M + \sin^{2} \alpha - \sum_{n=1}^{M} \cos 2\beta_{n}$$
$$E\left[g_{I}(t)g_{Q}(t)\right] = 2\sum_{n=1}^{M} \sin \beta_{n} \cos \beta_{n} + \sin \alpha \cos \alpha$$

• It is desirable that

$$E\left[g_{I}^{2}(t)\right] = E\left[g_{Q}^{2}(t)\right], \quad E\left[g_{I}(t)g_{Q}(t)\right] = 0$$
  
$$\pi n$$

• Choose the parameters  $\beta_n = \frac{\pi n}{M}$ ,  $\alpha = 0$ 

$$E\left[g_{I}^{2}(t)\right] = M + 1, \quad E\left[g_{Q}^{2}(t)\right] = M, \quad E\left[g_{I}(t)g_{Q}(t)\right] = 0$$
sai



#### Sum of Sinusoids Method (Cont.)

• If the last term of  $g_1(t)$  is ignored, we have

$$E\left[g_{I}^{2}(t)\right] = M, \quad E\left[g_{Q}^{2}(t)\right] = M, \quad E\left[g_{I}(t)g_{Q}(t)\right] = 0$$
  
- when  $\beta_{n} = \frac{\pi n}{M}, \quad \alpha = 0$ 

- Advantage: the **autocorrelation** of inphase and quadrature components reflect an **isotropic scattering** environment with a reasonable complexity
- The channel model output is a deterministic process
  - No random number generator is applied

Prof. Tsai



Prof. Tsai



Sum of Sinusoids Method (Cont.)



#### Wide-Band Multipath-Fading Channels

- For wide-band communication systems, the time-domain resolution is increased and multiple paths can be resolved
- $\tau$ -spaced model:
  - Model the channel by a tapped delay line
  - Assume a number of discrete paths at different delays

$$\widetilde{r}(t) = \sum_{i=1}^{c} g_i(t) \widetilde{s}(t - \tau_i)$$

 $-g_i(t)$  and  $\tau_i$  are the tap gain and delay of the *i*-th path

$$g(t,\tau) = \sum_{i=1}^{t} g_i(t) \delta(t-\tau_i)$$

#### - The tap gain and tap delay vectors

$$\mathbf{g}(t) = \left(g_1(t), g_2(t), \cdots, g_\ell(t)\right)$$
$$\boldsymbol{\tau} = \left(\tau_1, \tau_2, \cdots, \tau_\ell\right)$$

Prof. Tsai

107

#### Wide-Band Multipath-Fading Channels (Cont.)

• The path delays are multiples of some small number  $\tau$ 



## Multiple Faded Envelopes

- In many cases, it is desirable to generate multiple envelopes with **uncorrelated fading** (i.e., different paths with resolvable delays)
  - Generate up to *M* fading envelopes by using the same *M* frequency oscillators
- Give the *n*-th oscillator,  $1 \le n \le M$ , an additional phase shift  $\theta_{nk} = \gamma_{nk} + \beta_n$ ,  $1 \le k \le M$ , where *k* is the index of fading envelopes
- An additional constraint: the multiple faded envelopes should be **uncorrelated** 
  - Choose appropriate values of  $\gamma_{nk}$  and  $\beta_n$
- The *k*-th fading envelope is (ignore the last term of  $g_l(t)$ )

$$g_k(t) = 2\sqrt{2} \sum_{n=1}^{M} \left( \cos \beta_n + j \sin \beta_n \right) \underline{\cos(2\pi f_n t + \theta_{nk})}$$

Prof. Tsai





## Multiple Faded Envelopes (Cont.)

• Choose the parameters with the objective yielding uncorrelated waveforms

$$\beta_n = \frac{\pi n}{M+1}, \quad \gamma_{nk} = \frac{2\pi (k-1)n}{M+1}, \quad n = 1, 2, \dots, M$$

- Significant cross-correlation between the different generated fading envelopes (without modification)
- A modification that uses orthogonal **Walsh-Hadamard** codewords to decorrelate the fading envelopes is applied
  - $-A_k(n)$ : the *k*-th row of Hadamard matrix  $\mathbf{H}_M$

$$-A_k(n)$$
: +1 ("0") or -1 ("1")

$$g_k(t) = 2\sqrt{2}\sum_{n=1}^M A_k(n) (\cos\beta_n + j\sin\beta_n) \cos(2\pi f_n t + \theta_{nk})$$

Prof. Tsai

111

#### Multiple Faded Envelopes (Cont.)

- Walsh-Hadamard codes:
  - It is an orthogonal code set
  - The cross-correlation between different codes is zero
- The code period of Walsh codes must be a power of 2
  - The code length must be 2, 4, 8, 16, ...

$$\mathbf{H}_{1} = \begin{bmatrix} 0 \end{bmatrix} \quad \mathbf{H}_{2^{n}} = \begin{bmatrix} \mathbf{H}_{2^{(n-1)}} & \mathbf{H}_{2^{(n-1)}} \\ \mathbf{H}_{2^{(n-1)}} & \mathbf{\overline{H}}_{2^{(n-1)}} \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 1 \end{bmatrix};$$





#### Shadowing

- $\Omega_{v}$ : the mean envelope level,  $\Omega_{v} = E[\alpha(t)]$ 
  - where  $\alpha(t)$  is Rayleigh or Ricean distributed
  - The local mean: averaged over a few wavelengths
- $\Omega_p$ : the mean squared envelope level,  $\Omega_p = E[\alpha^2(t)]$
- $\Omega_v$  and  $\Omega_p$  are random variables due to shadow variations that caused by
  - Macrocell: large terrain features (buildings, hills)
  - Microcell: small objects (vehicles, human)
- $\Omega_v$  and  $\Omega_p$  follow the log-normal distributions

Linear  
Scale 
$$p_{\Omega_{\nu}}(x) = \frac{2}{x\sigma_{\Omega}\xi\sqrt{2\pi}} \exp\left[-\frac{(10\log_{10}x^2 - \mu_{\Omega_{\nu}(dBm)})^2}{2\sigma_{\Omega}^2}\right]$$
$$p_{\Omega_{\rho}}(x) = \frac{1}{x\sigma_{\Omega}\xi\sqrt{2\pi}} \exp\left[-\frac{(10\log_{10}x - \mu_{\Omega_{\rho}(dBm)})^2}{2\sigma_{\Omega}^2}\right]$$

Prof. Tsai

## Shadowing (Cont.)

- where  $\xi = \ln 10/10$  and

 $\mu_{\Omega_{\nu}(dBm)} = 30 + 10E[\log_{10}\Omega_{\nu}^{2}]; \quad \mu_{\Omega_{p}(dBm)} = 30 + 10E[\log_{10}\Omega_{p}]$ 

- $\Omega_{\nu(dBm)}$  and  $\Omega_{p(dBm)}$  have the Gaussian densities
  - The mean is determined by the propagation **path loss**

$$p_{\Omega_{\nu}(dBm)}(x) = \frac{1}{\sqrt{2\pi}\sigma_{\Omega}} \exp\left[-\frac{(x-\mu_{\Omega_{\nu}(dBm)})^{2}}{2\sigma_{\Omega}^{2}}\right]$$
  
Scale  
$$p_{\Omega_{p}(dBm)}(x) = \frac{1}{\sqrt{2\pi}\sigma_{\Omega}} \exp\left[-\frac{(x-\mu_{\Omega_{p}(dBm)})^{2}}{2\sigma_{\Omega}^{2}}\right]$$

- The standard deviation of log-normal shadowing ranges:
  - Macrocell:  $5 \sim 12 \text{ dB}$  with typical value  $\sigma_{\Omega} = 8 \text{ dB}$ 
    - $\sigma_{\Omega}$  increases slightly with frequency ( $\sigma_{1.8\text{GHz}} = \sigma_{900\text{MHz}} + 0.8\text{dB}$ )
  - Microcell:  $4 \sim 13 \text{ dB}$



## Simulation of Shadowing

- A shadow simulator should account the spatial correlation
- One simple model: the log-normal shadowing is modeled as
  - A Gaussian white noise process
  - Filtered with a first-order low-pass filter

$$\Omega_{k+1(\mathrm{dBm})} = \zeta \ \Omega_{k(\mathrm{dBm})} + (1-\zeta)v_k$$

- -k: the location index
- $-\zeta$ : control the spatial correlation of the shadowing
- $v_k$ : a zero-mean Gaussian random variable,  $\phi_{vv}(n) = \tilde{\sigma}^2 \delta(n)$
- The spatial autocorrelation function:

$$\phi_{\Omega_{(dBm)}\Omega_{(dBm)}}(n) = \frac{1-\zeta}{1+\zeta} \tilde{\sigma}^2 \zeta^{|n|}$$
$$\sigma_{\Omega}^2 = \phi_{\Omega_{(dBm)}\Omega_{(dBm)}}(0) = \frac{1-\zeta}{1+\zeta} \tilde{\sigma}^2$$

#### Simulation of Shadowing (Cont.)

$$\phi_{\Omega_{(\mathrm{dBm})}\Omega_{(\mathrm{dBm})}}(n) = \sigma_{\Omega}^2 \zeta^{|n|}$$

- This approach generates shadows that decorrelated **exponentially with distance**
- If an MS is traveling with velocity v, the envelope is sampled for every T seconds, and  $\zeta_D$  is the shadow correlation of spatial distance D m
  - Time difference  $kT \Rightarrow$  spatial distance vkT

$$\phi_{\Omega_{(dBm)}\Omega_{(dBm)}}(k) \equiv \phi_{\Omega_{(dBm)}\Omega_{(dBm)}}(kT) = \sigma_{\Omega}^{2} \zeta_{D}^{(vT/D)|k|}$$

 $-\zeta = \zeta_D^{(vT/D)}$ 

- Suburban 900 MHz:  $\sigma_{\Omega} \approx 7.5$  dB with corr. 0.82 (100m)
- Microcell 1700 MHz:  $\sigma_{\Omega} \approx 4.3$  dB with corr. 0.3 (10m)

Prof. Tsai



## Path Loss Models

Prof. Tsai

#### Free Space Path Loss Model

• Free space: the received signal power

$$\mu_{\Omega_p} = \Omega_t G_T G_R \left(\frac{\lambda_c}{4\pi d}\right)^2$$
$$\mu_{\Omega_p(dB)} = 10\log_{10} \left(\Omega_t G_T G_R \left(\frac{\lambda_c}{4\pi d}\right)^2\right)$$

 $\mu_{\Omega_p(dB)} = 10 \log_{10}(\Omega_t G_T G_R / 16\pi^2) + 20 \log_{10} \lambda_c - 20 \log_{10} d$ 

- $\Omega_t$ : the transmission power
- G<sub>T</sub> and G<sub>R</sub>: the transmitter and receiver antenna gains
- $-\lambda_c$ : the wavelength
- d: the radio path length

#### Mobile Radio Two-ray Path Loss Model

• Mobile radio environment (Two-ray model)



Mobile Radio Two-ray Path Loss Model (Cont.)

$$\begin{split} P_r &= P_t \left(\frac{\lambda_c}{4\pi d}\right)^2 \left| 1 + \alpha_v e^{j\Delta\phi} \right|^2 \\ &= P_t \left(\frac{\lambda_c}{4\pi d}\right)^2 \left| 1 - \cos\Delta\phi - j\sin\Delta\phi \right|^2 \\ &= P_t \left(\frac{\lambda_c}{4\pi d}\right)^2 \times 2(1 - \cos\Delta\phi) \\ &= P_t \left(\frac{\lambda_c}{4\pi d}\right)^2 \times 4\sin^2\frac{\Delta\phi}{2} \\ \Delta\phi &= \frac{2\pi}{\lambda_c}\Delta d, \text{ and } \Delta d = d_2 - d_1 \\ \hline d_1 &= \sqrt{(h_b - h_m)^2 + d^2}, \text{ and } d_2 = \sqrt{(h_b + h_m)^2 + d^2} \\ d_2^2 - d_1^2 &= 2d_1\Delta d + \Delta d^2 = 4h_bh_m \\ &\Rightarrow \Delta d \approx 2h_bh_m/d, \quad \Delta\phi = \frac{4\pi h_bh_m}{\lambda_c d} \\ &\Rightarrow P_r &= P_t \left(\frac{\lambda_c}{4\pi d}\right)^2 \times 4\sin^2\left(\frac{2\pi h_bh_m}{\lambda_c d}\right) \end{split}$$

#### Mobile Radio Two-ray Path Loss Model (Cont.)

The received signal power is

$$\mu_{\Omega_p} = 4\Omega_t \left(\frac{\lambda_c}{4\pi d}\right)^2 G_T G_R \sin^2 \left(\frac{2\pi h_b h_m}{\lambda_c d}\right)$$

When  $d >> h_b h_m$ ,  $\sin x \approx x$ 

$$\mu_{\Omega_p} = \Omega_t G_T G_R \left(\frac{h_b h_m}{d^2}\right)^2$$

- The differences to the free space model are: •
  - The path loss is not frequency dependent
  - The signal power decays with the 4<sup>th</sup> power of the distance
- The path loss is independent of  $\Omega_{t}$ ,  $G_{T}$ , and  $G_{R}$

$$L_{p(dB)} = 10\log_{10}\left\{\frac{\Omega_t G_T G_R}{\mu_{\Omega_p}}\right\} = -10\log_{10}\left\{4\left(\frac{\lambda_c}{4\pi d}\right)^2 \sin^2\left(\frac{2\pi h_b h_m}{\lambda_c d}\right)\right\} dB$$
Prof. Tsai

P

#### Mobile Radio Two-ray Path Loss Model (Cont.)



#### Path Loss in Macrocells

- The path loss models used in macrocell applications are **empirical** models
  - The environment is **too complex** to obtained a completely theoretical-based model
  - Obtained by curve fitting based on the experimental data
- For 900 MHz cellular systems, the most common used path loss model is

#### - Okumura-Hata's model

- Empirical data was collected by Okumura (in Tokyo)
- Modeled by Hata

Prof. Tsai

129

#### Okumura-Hata's Model

•  $f_c: 150 \sim 1500 \text{MHz}, d: >1 \text{Km}, h_b: 30 \sim 200 \text{m}, h_m: 1 \sim 10 \text{m}$ 

|                                | $(A+B\log_{10}(d))$      | for urban area    |
|--------------------------------|--------------------------|-------------------|
| $L_{p(\mathrm{dB})} = \langle$ | $A + B \log_{10}(d) - C$ | for suburban area |
|                                | $A + B \log_{10}(d) - D$ | for open area     |

– where

$$A = 69.55 + 26.16 \log_{10}(f_c) - 13.82 \log_{10}(h_b) - a(h_m)$$
  

$$B = 44.9 - 6.55 \log_{10}(h_b)$$
  

$$C = 5.4 + 2[\log_{10}(f_c/28)]^2$$
  

$$D = 40.94 + 4.78[\log_{10}(f_c)]^2 - 18.33 \log_{10}(f_c)$$
  
([1 1] log (f) = 0.7]h = [1.56 \log\_{10}(f\_c) - 0.8] for madium of

 $a(h_m) = \begin{cases} [1.1\log_{10}(f_c) - 0.7]h_m - [1.56\log_{10}(f_c) - 0.8], \text{ for medium or small city} \\ \{8.28[\log_{10}(1.54h_m)]^2 - 1.1, \text{ for } f_c \le 200 \text{ MHz} \\ 3.2[\log_{10}(11.75h_m)]^2 - 4.97, \text{ for } f_c \ge 400 \text{ MHz} \end{cases}, \text{ for large city} \end{cases}$ 

#### Okumura-Hata's Model (Cont.)

- Another empirical model published by the CCIR:  $L_{p(dB)} = A + B \log_{10}(d) - E$ 
  - where

$$A = 69.55 + 26.16\log_{10}(f_c) - 13.82\log_{10}(h_b) - a(h_m)$$

 $B = 44.9 - 6.55 \log_{10}(h_b)$ 

$$E = 30 - 25 \log_{10}(\% \text{ of area covered by buildings: } 1 \sim 100)$$

$$a(h_m) = [1.1\log_{10}(f_c) - 0.7]h_m - [1.56\log_{10}(f_c) - 0.8]$$

- The parameter *E* accounts for the degree of urbanization
  - E = 0 when the area is covered by approximately 16 % of buildings

Prof. Tsai

131

#### Okumura-Hata's Model (Cont.)

- Another expression
- $f_c: 150 \sim 1500$  MHz, d: >1 Km,  $h_b: 30 \sim 200$  m,  $h_m: 1 \sim 10$  m
- $P_0 = A + B \log(d)$ =  $[69.55 + 26.16 \log(f_c) - 13.82 \log(h_b)]$ +  $[44.9 - 6.55 \log(h_b)] \log(d)$
- $a(h_m)$ :

#### – Large city:

- $f_c < 200$ MHz:  $a(h_m) = 8.28 [log(1.54 h_m)]^2 1.1$
- $f_c > 400$ MHz:  $a(h_m) = 3.2 [log(11.75 h_m)]^2 4.97$
- Medium or Small city:
  - $a(h_m) = [1.1 \log(f_c) 0.7]h_m [1.56\log(f_c) 0.8]$

#### Okumura-Hata's Model (Cont.)

#### • Distance correction factor:

- d < 20Km: cr(d) = 0
- d > 20Km: cr(d) =  $(d 20)[0.31081 + 0.1865\log(h_b/100)]$
- d > 64.36Km: cr(d) =  $(d 20)[0.31081 + 0.1865 \log(h_b/100)] 0.174(d 64.36)$

#### • Environment correction factor:

- Urban area:  $ce(f_c) = 0$
- Suburban area:  $ce(f_c) = -2[log(f_c/28)]^2 5.4$
- Open area:  $ce(f_c) = -4.78[log(f_c)]^2 + 18.33 log(f_c) 40.94$
- $P_L = P_O a(h_m) + cr(d) + ce(f_c) dB$

| P | rof. | Tsai |
|---|------|------|
|   |      |      |



#### Path Loss in Outdoor Macro-/Micro-cells

- For the PCS microcellular systems operating in 1800-2000 MHz frequency bands, the two common used path loss models are
  - COST231-Hata model (Macrocellular)
  - Two-slope model (Microcellular)

Prof. Tsai

135

## COST231-Hata Model

- Extend Okumura-Hata model for 1500-2000 MHz range
- $f_c: 1500 \sim 2000 \text{ MHz}, d: 1 \sim 20 \text{ Km}, h_b: 30 \sim 200 \text{m}, h_m: 1 \sim 10 \text{m}$

 $L_{p(dB)} = A + B \log_{10}(d) + C$   $B = 44.9 - 6.55 \log_{10}(h_b)$ Okumura-Hata's Model  $A = 69.55 + 26.16 \log_{10}(f_c) - 13.82 \log_{10}(h_b) - a(h_m)$ 

 $A = 46.3 + 33.9 \log_{10}(f_c) - 13.82 \log_{10}(h_b) - a(h_m)$  $B = 44.9 - 6.55 \log_{10}(h_b)$ 

 $C = \begin{cases} 0 & \text{medium city and suburban areas with moderate tree density} \\ 3 & \text{for metropolitan centers} \end{cases}$ 

- Good accuracy for a path length larger than 1 km
- Should not be used for smaller ranges (near field)
  - The path loss becomes highly dependent upon the local topography

#### Two-Slope Model (Street Microcells)

For a range less than 500m and the antenna height less than 20m



$$\mu_{\Omega_{p}} = 10 \log_{10}(k\Omega_{t}) - 10 \log_{10}(d^{a}(1+d/g)^{b}) \quad (dBm)$$

$$= 10 \log_{10}(k\Omega_{t}) - 10 \log_{10}g^{a} - 10 \log_{10}(d/g)^{a} - 10 \log_{10}(1+d/g)^{b}$$

$$= 10 \log_{10}(k\Omega_{t}) - 10a \log_{10}g - 10a \log_{10}(d/g) - 10b \log_{10}(1+d/g)$$

$$\approx \begin{cases} 10 \log_{10}(k\Omega_{t}) - 10a \log_{10}d, & \text{if } d << g \\ 10 \log_{10}(k\Omega_{t}) - 10a \log_{10}g - 10(a+b) \log_{10}(d/g), & \text{if } d >> g \end{cases}$$

- When close into the BS: free-space propagation  $\Rightarrow a = 2$
- At larger distance: inverse-fourth power law  $\Rightarrow b = 2$

Prof. Tsai





#### Two-Slope Model (Street Microcells) (Cont.)

- We set  $\Sigma = h_b + h_m$  and  $\Delta = h_b h_m$
- Find the break-point g

$$\begin{split} \sqrt{\Sigma^{2} + g^{2}} &- \sqrt{\Delta^{2} + g^{2}} = \frac{\lambda_{c}}{2} \\ \sqrt{\Sigma^{2} + g^{2}} &= \sqrt{\Delta^{2} + g^{2}} + \frac{\lambda_{c}}{2} \\ \Sigma^{2} + g^{2} &= \Delta^{2} + g^{2} + \lambda_{c}\sqrt{\Delta^{2} + g^{2}} + (\frac{\lambda_{c}}{2})^{2} \\ \left[\Sigma^{2} - \Delta^{2} - (\frac{\lambda_{c}}{2})^{2}\right]^{2} &= (\lambda_{c})^{2}(\Delta^{2} + g^{2}) \\ (\Sigma^{2} - \Delta^{2})^{2} - 2(\Sigma^{2} + \Delta^{2})(\frac{\lambda_{c}}{2})^{2} + (\frac{\lambda_{c}}{2})^{4} &= (\lambda_{c})^{2}g^{2} \\ g &= \frac{1}{\lambda_{c}}\sqrt{(\Sigma^{2} - \Delta^{2})^{2} - 2(\Sigma^{2} + \Delta^{2})(\frac{\lambda_{c}}{2})^{2} + (\frac{\lambda_{c}}{2})^{4}} \end{split}$$

#### Two-Slope Model (Street Microcells) (Cont.)

• For conventional environments, break point  $g = 150 \sim 300$ m

$$g = \frac{1}{\lambda_c} \sqrt{\left(\Sigma^2 - \Delta^2\right)^2 - 2(\Sigma^2 + \Delta^2)\left(\frac{\lambda_c}{2}\right)^2 + \left(\frac{\lambda_c}{2}\right)^4}$$

• For high frequency 
$$(\lambda_c^2 \leq (\Sigma^2 - \Delta^2)^2)$$
:

$$g \approx \frac{1}{\lambda_c} \sqrt{(\Sigma^2 - \Delta^2)^2} = \frac{\Sigma^2 - \Delta^2}{\lambda_c} = \frac{4h_b h_m}{\lambda_c}$$

Prof. Tsai

## Two-Slope Model (Street Microcells) (Cont.)

- JTC model (microcell model)
  - $d_{bp} = (4 h_b h_m)/\lambda_c$ , (break point)





## Corner Effect (Street Microcells)

- Corner Effect: street microcells with NLOS propagation
  - The average received signal strength drops by 25~30 dB over a distance as small as 10 m to 50 m
- The NLOS propagation is modeled as:
  - A LOS propagation from an virtual transmitter located at corner
  - The transmit power is equal to the received power at corner from BS

$$\mu_{\Omega_{p}} = \begin{cases} \frac{k\Omega_{t}}{d^{a}(1+d/g)^{b}}, & d \leq d_{c} \\ \frac{k\Omega_{t}}{d^{a}_{c}(1+d_{c}/g)^{b}} \cdot \frac{1}{(d-d_{c})^{a}(1+(d-d_{c})/g)^{b}}, & d > d_{c} \end{cases}$$


## Path Loss in Indoor Microcells

• The path loss and shadowing characteristics for indoor environments **vary greatly** from one building to another

| Building               | Frequency (MHz) | β   | $\sigma_{\Omega} (dB)$ |
|------------------------|-----------------|-----|------------------------|
| <b>Retail Stores</b>   | 914             | 2.2 | 8.7                    |
| Grocery Stores         | 914             | 1.8 | 5.2                    |
| Office, hard partition | 1500            | 3.0 | 7.0                    |
| Office, soft partition | 900             | 2.4 | 9.6                    |
| Office, soft partition | 1900            | 2.6 | 14.1                   |

- Floor loss:
  - One floor:  $15 \sim 20 \text{ dB}$
  - Up to 4 floors: additional  $6 \sim 10 \text{ dB/floor}$
  - 5 or more floors: increase only a few dB for each additional floor

Prof. Tsai

147

## Path Loss in Indoor Microcells (Cont.)

- Building penetration loss:
  - Decreases with the increase in frequency
  - Typical values: 16.4, 11.6 and 7.6 dB at 441 MHz, 896.5 MHz and 1400 MHz
  - Decreases by about 2 dB/floor from ground level up to about 9~15 floors and then increases again
  - $\Rightarrow$  It is due to the BS antenna heights and the antenna pattern







## Question

- Question:
  - What kind of path loss models should be applied?
  - Why the shadowing loss can be positive or negative?
- It depends on the applications (macro- or micro-cellular Sys.) and the requirements (Accuracy, Complexity, ...)



## MIMO Channel Models

Prof. Tsai

## MIMO Channel Models

Tx

- A MIMO (Multiple-Input and Multiple-Output) system is one that consists of multiple transmit and receive antennas.
- For a system consisting of  $N_t$  transmit and  $N_r$  receive antennas, the channel can be described by the  $N_r \times N_t$  matrix.



- where  $g_{q,p}(t, \tau)$  denotes the time-varying sub-channel impulse response between the *p*th transmit and *q*th receive antennas.

1

Rx

## Analytical MIMO Channel Models

- Analytical MIMO channel models are most often used under quasi-static flat fading conditions.
- The time-variant channel impulses  $g_{q,p}(t,\tau)$  for flat fading channels can be treated as complex Gaussian random processes under conditions of **Rayleigh** and **Ricean** fading.
- The various analytical models generate the MIMO matrices as realizations of complex Gaussian random variables having specified **means** and **correlations**.
- For Ricean fading, the channel matrix can be expressed as

$$\mathbf{G} = \sqrt{\frac{K}{K+1}}\mathbf{\overline{G}} + \sqrt{\frac{1}{K+1}}\mathbf{G}_{S}$$

- $\bar{\mathbf{G}}$ : is the LOS or specular component (a deterministic part)
- $G_{S}$ : is the scatter component having zero-mean (a random part)

Prof. Tsai

153

## Analytical MIMO Channel Models (Cont.)

- The **simplest** MIMO model assumes that the entries of the matrix **G** are **independent and identically distributed (i.i.d.)** complex Gaussian random variables.
  - The rich scattering or spatially white environment.
  - It simplifies the performance analysis on MIMO channels.
  - However, **in reality** the sub-channels will be **correlated**, and the i.i.d. model will lead to optimistic results.
- Define  $\mathbf{g} = \operatorname{vec} \{ \mathbf{G} \} = [\mathbf{g}_1^T, \mathbf{g}_2^T, \cdots, \mathbf{g}_{N_t}^T]^T$ 
  - where  $\mathbf{G} = [\mathbf{g}_1, \mathbf{g}_2, \cdots, \mathbf{g}_{N_t}]$  is the channel matrix
  - **g** is a zero-mean complex Gaussian random column vector of length  $n = N_t \times N_r$
  - Its statistics are fully specified by the  $n \times n$  covariance matrix  $\mathbf{R}_{\mathbf{G}} = \frac{1}{2} \mathbf{E}[\mathbf{g}\mathbf{g}^{H}]$

## Analytical MIMO Channel Models (Cont.)

- Hence, g is a multivariate complex Gaussian distributed vector
   g ~ CN(0, R<sub>G</sub>)
- If  $\mathbf{R}_{\mathbf{G}}$  is invertible, the probability density function of  $\mathbf{g}$  is

$$f(\mathbf{g}) = \frac{1}{(2\pi)^n \det(\mathbf{R}_{\mathbf{G}})} \exp\left[-\frac{1}{2}\mathbf{g}^H \mathbf{R}_{\mathbf{G}}^{-1} \mathbf{g}\right], \quad \mathbf{g} \in C^n$$

- The covariance matrix  $\mathbf{R}_{\mathbf{G}}$  depends on the **propagation** environments and the antenna configuration.
- Given a covariance matrix  $\mathbf{R}_{\mathbf{G}}$ , realizations of an MIMO channel can be generated by

$$\mathbf{G} = \operatorname{unvec} \{\mathbf{g}\}, \quad \operatorname{with} \, \mathbf{g} = \mathbf{R}_{\mathbf{G}}^{1/2} \mathbf{w}$$

- $\mathbf{R}_{\mathbf{G}}^{1/2}$  is any matrix square root of  $\mathbf{R}_{\mathbf{G}}$ ; that is,  $\mathbf{R}_{\mathbf{G}} = \mathbf{R}_{\mathbf{G}}^{1/2} (\mathbf{R}_{\mathbf{G}}^{1/2})^{H}$
- w is a length *n* vector where  $\mathbf{w} \sim C\mathcal{N}(\mathbf{0}, \mathbf{I})$  (a white noise vector) for a **Rayleigh** fading channel

Prof. Tsai

155

#### Angular-domain Model

- Assumed that  $N_t$  transmit antennas and  $N_r$  receive antennas are placed in **uniform linear arrays (ULA)** with the antenna separations  $\Delta_t \lambda_c \ll d$  and  $\Delta_r \lambda_c \ll d$ . ( $\Delta_t, \Delta_r$ : normalized to  $\lambda_c$ )
- Considering a **SIMO** channel with an incidence angle  $\phi_r$ , the time impulse response between the signal source and the *i*-th receive antenna is  $h_i(\tau) = a\delta(\tau d_i/c)$   $(i 1)\Delta_r \lambda_c \sin \phi_r$

$$- a \text{ is the path attenuation, } c \text{ is the light speed}$$

$$d_i = d - (i - 1)\Delta_r \lambda_c \sin \phi_r, -\pi/2 \le \phi_r \le \pi/2$$

$$d_i = d - (i - 1)\Delta_r \lambda_c \cos \phi'_r, 0 \le \phi_r \le \pi$$

$$d_1 = d$$

$$f_1 = d$$

$$f_2 = d$$

$$f_1 = d$$

$$f_2 = d$$

$$f_2 = d$$

$$f_1 = d$$

$$f_2 = d$$

$$f_1 = d$$

$$f_2 = d$$

$$f_2 = d$$

$$f_1 = d$$

$$f_2 = d$$

$$f_2 = d$$

$$f_1 = d$$

$$f_2 = d$$

$$f_2 = d$$

$$f_1 = d$$

$$f_2 = d$$

$$f_2 = d$$

$$f_1 = d$$

$$f_2 = d$$

$$f_2 = d$$

$$f_1 = d$$

$$f_2 = d$$

$$f_2 = d$$

$$f_2 = d$$

$$f_2 = d$$

$$f_1 = d$$

$$f_2 = d$$

$$f_2 = d$$

$$f_2 = d$$

$$f_2 = d$$

$$f_1 = d$$

$$f_2 = d$$

$$f_3 = d$$

$$f_4 = d$$

$$f_1 = d$$

$$f_2 = d$$

$$f_2 = d$$

$$f_2 = d$$

$$f_3 = d$$

$$f_4 = d$$

$$f_4 = d$$

$$f_4 = d$$

$$f_5 = d$$

$$f_5 = d$$

$$f_6 = d$$

$$f_6 = d$$

$$f_7 = d$$

$$f_6 = d$$

$$f_7 = d$$

Prof. Tsai

• The channel gain at the *i*-th receive antenna is  $g_i = a \exp(-j2\pi f_c d_i/c) = a \exp(-j2\pi d_i/\lambda_c)$ Phase difference due to different propagation distance  $= a \exp(-j2\pi d/\lambda_c) \exp[+j2\pi (i-1)\Delta_r \sin \phi_r]$ 

- where  $\lambda_c$  is the carrier wavelength and  $f_c$  is the carrier frequency

• For the considered **SIMO** channel, the received signal vector can be represented as  $\mathbf{y} = \mathbf{g}\mathbf{x} + \mathbf{w}$ 

- where x is the transmit signal, w is the channel noise vector, and

$$\mathbf{g} = ae^{-j2\pi d/\lambda_c} \begin{bmatrix} 1\\ e^{j2\pi(d-d_2)/\lambda_c}\\ e^{j2\pi(d-d_3)/\lambda_c}\\ \vdots\\ e^{j2\pi(d-d_N_r)/\lambda_c} \end{bmatrix} = ae^{\psi_1} \begin{bmatrix} 1\\ e^{j2\pi\lambda_r\sin\phi_r}\\ e^{j2\pi\times2\Delta_r\sin\phi_r}\\ \vdots\\ e^{j2\pi\times(N_r-1)\Delta_r\sin\phi_r} \end{bmatrix} \overset{\text{Array response vector for the incoming direction } \phi_r$$
Tsai 157

Prof. Tsai

#### Angular-domain Model (Cont.)

- Define the spatial frequency as  $\Omega_r = \sin \phi_r$
- $-1 \le \Omega_r \le +1$ • For the **SIMO** channel  $\mathbf{g} = ae^{\psi_1} \begin{bmatrix} 1\\ e^{j2\pi\Delta_r\Omega_r}\\ e^{j2\pi\times 2\Delta_r\Omega_r}\\ \vdots\\ e^{j2\pi\times (N_r-1)\Delta_r\Omega_r} \end{bmatrix}$
- By setting the antenna separation as  $\Delta_r = 1/2$

$$\mathbf{g} = a e^{\psi_1} \begin{bmatrix} 1 \\ e^{j\pi\Omega_r} \\ e^{j2\pi\Omega_r} \\ \vdots \\ e^{j(N_r-1)\pi\Omega_r} \end{bmatrix}$$

• Similarly, for a **MISO** channel (transmitter: multiple antennas; receiver: single antenna) with a radiation angle  $\phi_t$ , the received signal can be represented as

$$y = \tilde{\mathbf{g}}^T \mathbf{x} + w$$

- where  $\mathbf{x}$  is the transmitted signal vector, w is the channel noise
- Define the spatial frequency as  $\Omega_t = \sin \phi_t$



Prof. Tsai

## Angular-domain Model (Cont.)

By cascading MISO and SIMO channels, a narrowband MIMO channel (N<sub>r</sub>×N<sub>t</sub> channel matrix) is represented as

$$\mathbf{y} = \mathbf{G}\mathbf{x} + \mathbf{w}$$

- where G is the **spatial-domain** MIMO channel model
- Suppose there be an arbitrary number of physical paths between the transmitter and the receiver.



159

- The *i*-th path has an overall attenuation of  $\alpha_i$ , making an angle of  $\phi_{ti}$  ( $\Omega_{ti} = \sin \phi_{ti}$ ) for the transmit antennas and an angle of  $\phi_{ri}$  ( $\Omega_{ri} = \sin \phi_{ri}$ ) for the receive antennas.
- The **channel matrix G** can be represented as (sum of all paths)  $\mathbf{G} = \sum_{i} \alpha_{i} \sqrt{N_{t} N_{r}} \exp(-j2\pi d^{(i)}/\lambda_{c}) \mathbf{a}_{r}(\Omega_{ri}) \mathbf{a}_{t}^{H}(\Omega_{ti})$ 
  - *i* **Spatial-domain channel matrix** - where  $d^{(i)}$  is the distance between transmit antenna 1 and receive antenna 1 along **the** *i*-**th path**, and the **channel steering/array response vectors** are

$$\mathbf{a}_{t}(\Omega) \triangleq \frac{1}{\sqrt{N_{t}}} \begin{bmatrix} 1\\ e^{j2\pi\Delta_{t}\Omega}\\ e^{j2\pi\times2\Delta_{t}\Omega}\\ \vdots\\ e^{j2\pi\times(N_{t}-1)\Delta_{t}\Omega} \end{bmatrix}; \mathbf{a}_{r}(\Omega) \triangleq \frac{1}{\sqrt{N_{r}}} \begin{bmatrix} 1\\ e^{j2\pi\Delta_{r}\Omega}\\ e^{j2\pi\times2\Delta_{r}\Omega}\\ \vdots\\ e^{j2\pi\times(N_{r}-1)\Delta_{r}\Omega} \end{bmatrix}$$

Prof. Tsai

#### Angular-domain Model (Cont.)

- If the antenna separation is set to  $\Delta_r = \Delta_t = 1/2$ , each antenna array can resolve  $N_r$  or  $N_t$  orthogonal directions
  - which can be regarded as a quantized approximation for  $\phi_r$ ,  $\phi_t$
  - Uniform quantization in the spatial frequency  $\Omega_r$ ,  $\Omega_t$
  - To form  $N_r$ ,  $N_t$  orthogonal basis vectors
- The combined orthogonal basis vectors form an **IDFT** matrix

$$\mathbf{U}_{t} \triangleq \begin{bmatrix} \mathbf{a}_{t}(0) & \mathbf{a}_{t}(2/N_{t}) & \cdots & \mathbf{a}_{t}(2(N_{t}-1)/N_{t}) \end{bmatrix}$$
$$\mathbf{U}_{r} \triangleq \begin{bmatrix} \mathbf{a}_{r}(0) & \mathbf{a}_{r}(2/N_{r}) & \cdots & \mathbf{a}_{r}(2(N_{r}-1)/N_{r}) \end{bmatrix}$$
If the **shortest** path is set to  
$$d_{1} = d, \text{ the basis}$$
vectors form 
$$\mathbf{a}_{t}(\Omega) \triangleq \frac{1}{\sqrt{N_{t}}} \begin{bmatrix} 1\\ e^{-j2\pi\lambda_{t}\Omega}\\ e^{-j2\pi\times2\Delta_{t}\Omega}\\ \vdots\\ e^{-j2\pi\times(N_{t}-1)\Delta_{t}\Omega} \end{bmatrix}; \mathbf{a}_{r}(\Omega) \triangleq \frac{1}{\sqrt{N_{r}}} \begin{bmatrix} 1\\ e^{-j2\pi\lambda_{t}\Omega}\\ e^{-j2\pi\times(N_{r}-1)\Delta_{r}\Omega}\\ \vdots\\ e^{-j2\pi\times(N_{r}-1)\Delta_{r}\Omega} \end{bmatrix}$$

161

- Note that each basis vector,  $\mathbf{a}_t(2k/N_t)$  or  $\mathbf{a}_r(2k/N_r)$ , corresponds to a single pair of main lobes around the main directions.
  - Provide the best angle-domain resolution
- We can have different **quantized approximation** by applying different direction mappings



## Angular-domain Model (Cont.)

- Assume that the antenna separation is  $\Delta_t = \Delta_r = 1/2$ , each basis vector corresponds to a **radiation** angle or an **incidence** angle.
- The transformations  $\mathbf{x}^{(a)} \triangleq \mathbf{U}_t^H \mathbf{x}$  and  $\mathbf{y}^{(a)} \triangleq \mathbf{U}_r^H \mathbf{y}$  correspond to transferring the coordinates of the transmitted and received signals into **the angular-domain**. ((·)<sup>*H*</sup>: Hermitian operator)
- The received signal in the angular-domain is represented as

$$\mathbf{y}^{(a)} = \mathbf{U}_r^H \mathbf{y} = \mathbf{U}_r^H \mathbf{G} \mathbf{x} + \mathbf{U}_r^H \mathbf{w}$$
$$= \mathbf{U}_r^H \mathbf{G} \mathbf{U}_r \mathbf{x}^{(a)} + \mathbf{U}_r^H \mathbf{w}$$

$$\triangleq \mathbf{G}^{(a)}\mathbf{x}^{(a)} + \mathbf{w}^{(a)}$$

- where the **angular-domain channel matrix** is

$$\mathbf{G}^{(a)} = \mathbf{U}_r^H \mathbf{G} \mathbf{U}_t$$

- The angular-domain noise vector is  $\mathbf{w}^{(a)} = \mathbf{U}_{r}^{H}\mathbf{w}$ The noise power remains the same

- Hence, different physical paths (different radiation angles and/or different incidence angles) approximately contribute to different entries in the angular-domain channel matrix  $\mathbf{G}^{(a)}$ .
  - The angular resolution depends on  $N_t(N_r)$ , and  $\Delta_t(\Delta_r)$
- Based on  $\mathbf{G}^{(a)} = \mathbf{U}_r^H \mathbf{G} \mathbf{U}_t$ , the (i, j)-th element is

$$g_{i,j}^{(a)} = \mathbf{a}_r^H \left( 2(i-1)/N_r \right) \mathbf{G} \mathbf{a}_t \left( 2(j-1)/N_t \right)$$

which is an element contributed by the path corresponding to the *j*-th radiation angle and the *i*-th incidence angle

| ~; (g)               | $egin{array}{c} g_{1,1}^{(a)} \ g_{2,1}^{(a)} \end{array}$ | $g_{1,2}^{(a)} \ g_{2,2}^{(a)}$ | •••• | $\left[ \begin{array}{c} g^{(a)}_{1,N_t} \\ g^{(a)}_{2,N} \end{array}  ight]$ |
|----------------------|------------------------------------------------------------|---------------------------------|------|-------------------------------------------------------------------------------|
| $\mathbf{G}^{(a)} =$ | $\mathbf{\sigma}^{(a)}$                                    | $\mathbf{\sigma}^{(a)}$         |      | $\sigma^{(a)}$                                                                |
|                      | $s_{N_r,1}$                                                | $\mathcal{S}_{N_r,2}$           |      | $\mathcal{S}_{N_r,N_t}$                                                       |

Prof. Tsai

165

## Angular-domain Model (Cont.)

- For an environment with limited angular spread at the receiver and/or the transmitter, many entries of  $G^{(a)}$  may be zero.
  - Significantly reduce the estimation and computation complexity



## Some Stochastic Channel Models

Prof. Tsai

## Stochastic Channel Model (SCM)

- SCM is a parametric model for the delay spread functions
- Requirements for SCMs:
  - Completeness: SCMs must reproduce all effects that impact on the performance of communication systems
  - Accuracy: SCMs must accurately describe these effects.
  - Simplicity/low complexity: Each effect must be described by a simple model.
- Good SCMs can
  - Guarantee simulation scenarios close to reality
  - Enable theoretical study of some particular system aspects and performance
  - Be used to simulate the channel in Monte Carlo simulations with acceptable computational effort

## COST 207 Channel Models

Prof. Tsai

## Channel Models Proposed by COST

- **COST**: European COoperation in Science and Technology
- COST-207: Digital Land Mobile Radiocommunications (1988)
   Channel models for GSM 900 systems
- **COST-231**: Evolution of Land Mobile Radio (including personal) Communication (1996)
  - Channel models for GSM 1800 systems
- COST-259: Wireless Flexible Personalized Communications (2000)
  - $-\,$  Channel models for DECT, UMTS and HIPERLAN 2  $\,$
- COST-273: Towards Mobile Broadband Multimedia Networks (2005)
  - Channel models for UMTS and WLAN
  - MIMO channel models

### COST 207 Channel Models

- Normalized delay-Doppler scattering (power) function: S<sub>n</sub><sup>(P)</sup>(τ,ν) ≜ S<sup>(P)</sup>(τ,ν)/P ⇒ ∫ S<sub>n</sub><sup>(P)</sup>(τ,ν) dτ dν = 1
   - where P is the total received power
   We can decompose S<sub>n</sub><sup>(P)</sup>(τ,ν) as S<sub>n</sub><sup>(P)</sup>(τ,ν) = S<sub>n</sub><sup>(P)</sup>(τ) × S<sub>n</sub><sup>(P)</sup>(ν|τ). Normalized delay Delay-dependent normalized scattering function Doppler scattering function
   The COST 207 models are specified by the two functions: - S<sub>n</sub><sup>(P)</sup>(τ): scattering power of the channel in terms of the time delay τ
  - $-S_n^{(P)}(v|\tau)$ : scattering power of the channel in terms of Doppler frequency v, given the time delay  $\tau$

Prof. Tsai

COST 207 – Normalized Delay Scattering Fun.

• Typical urban non-hilly area (TU):



171



• Typical rural non-hilly area (RA):





• Classical Doppler spectrum (CLASS): isotropic scattering  $(\tau \le 0.5 \mu s)$   $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ 



Prof. Tsai



#### COST 207 – Normalized DS Fun. (Cont.)





#### COST 207 Channel Models – TU/BU

• Typical urban (TU) ( $\sigma_{\tau} = 1.0 \ \mu s$ ) and bad urban (BU) ( $\sigma_{\tau} = 2.5 \ \mu s$ ) power delay profiles

| Typical Urban (TU) |                  |         |            | Bad Urban (BU)   |         |
|--------------------|------------------|---------|------------|------------------|---------|
| Delay (µs)         | Fractional Power | Doppler | Delay (µs) | Fractional Power | Doppler |
| 0.0                | 0.092            | CLASS   | 0.0        | 0.033            | CLASS   |
| 0.1                | 0.115            | CLASS   | 0.1        | 0.089            | CLASS   |
| 0.3                | 0.231            | CLASS   | 0.3        | 0.141            | CLASS   |
| 0.5                | 0.127            | CLASS   | 0.7        | 0.194            | GAUS1   |
| 0.8                | 0.115            | GAUS1   | 1.6        | 0.114            | GAUS1   |
| 1.1                | 0.074            | GAUS1   | 2.2        | 0.052            | GAUS2   |
| 1.3                | 0.046            | GAUS1   | 3.1        | 0.035            | GAUS2   |
| 1.7                | 0.074            | GAUS1   | 5.0        | 0.140            | GAUS2   |
| 2.3                | 0.051            | GAUS2   | 6.0        | 0.136            | GAUS2   |
| 3.1                | 0.032            | GAUS2   | 7.2        | 0.041            | GAUS2   |
| 3.2                | 0.018            | GAUS2   | 8.1        | 0.019            | GAUS2   |
| 5.0                | 0.025            | GAUS2   | 10.0       | 0.006            | GAUS2   |





Prof. Tsai

182



# IEEE 802.16 Broadband Wireless Access Working Group

(Channel Models for Fixed Wireless Applications)

Prof. Tsai

#### IEEE 802.16 Broadband Wireless Access

- Channel Models for Fixed Wireless Applications (2003)
  - A set of propagation models applicable to the multi-cell architecture with non-line-of-sight (NLOS) conditions is presented.
- Typically, the scenario is as follows:
  - Cells are < 10 km in radius
  - Under-the-eave/window or rooftop installed **directional** antennas (2 10 m) at the receiver
  - -15-40 m BTS antennas
  - High cell coverage requirement (80-90%)
- The wireless channel is characterized by:
  - Path loss (including shadowing), Multipath delay spread, Fading characteristics, Doppler spread, Co-channel and adjacent channel interference

#### IEEE 802.16 CMs – Path Loss

• For a given close-in reference distance  $d_0$ , the path loss is

$$PL_{(dB)} = A + 10\gamma \log_{10}(d/d_0) + s, \text{ for } d > d_0$$
  
$$A = 20 \log_{10}(4\pi d_0/\lambda), \quad \gamma = a - bh_b + c/h_b, \quad d_0 = 100m$$

- Category A: hilly terrain with moderate-to-heavy tree densities
- Category B: Intermediate path loss condition
- Category C: mostly flat terrain with light tree densities
- s: the shadowing effect, which follows lognormal distribution with the std. ranged between 8.2 and 10.6 dB.

| Model parameter | Terrain Type A | Terrain Type B | Terrain Type C |
|-----------------|----------------|----------------|----------------|
| а               | 4.6            | 4              | 3.6            |
| b               | 0.0075         | 0.0065         | 0.005          |
| С               | 12.6           | 17.1           | 20             |

Prof. Tsai

187

#### IEEE 802.16 CMs – Path Loss (Cont.)

- The above path loss model is based on published literature for frequencies close to 2 GHz and for receive antenna heights close to 2 m.
- In order to use the model for other frequencies and for **receive antenna heights** between **2 m and 10 m**, correction terms have to be included.

$$PL_{\text{modified}} = PL + \Delta PL_f + \Delta PL_h$$

- The frequency (MHz) correction term:  $\Delta PL_f = 6\log_{10}(f/2000)$
- The receive antenna height correction term:
  - Categories A and B:  $\Delta PL_h = -10.8 \log_{10}(h_h/2)$
  - Category C:  $\Delta PL_h = -20\log_{10}(h_h/2)$

#### IEEE 802.16 CMs – Multipath Delay Profile

• For directional antennas, the delay profile can be represented by **a spike-plus-exponential shape**. It is characterized by  $\tau_{\rm rms}$ (RMS delay spread) which is defined as

$$\tau_{\rm rms} = \sqrt{\sum_{j} P_j \tau_j^2 - (\tau_{\rm avg})^2}$$

The delay profile is given by

$$P(\tau) = A\delta(\tau) + B\sum_{i=0}^{\infty} \exp(-i\Delta\tau/\tau_0)\delta(\tau - i\Delta\tau)$$

- where A, B and  $\Delta \tau$  are experimentally determined
- The delay spread model is of the following form  $\tau_{\rm rms} = T_1 d^{\varepsilon} y$ 
  - where d is the distance in km,  $T_1$  is the median value of  $\tau_{\text{rms}}$  at d = 1 km,  $\varepsilon$  is an exponent that lies between 0.5-1.0, and y is a lognormal variate.
  - 32° and 10° **directive antennas** reduce the median  $\tau_{\rm rms}$  values for omni-directional antennas by factors of 2.3 and 2.6, respectively.

Prof. Tsai

189

#### IEEE 802.16 CMs – Fading Characteristics

- The narrow band received signal fading can be characterized by a **Ricean** distribution.
- A model for estimating the K-factor (in linear scale) is

$$K = F_s F_h F_b K_o d^{\gamma} u$$

- $F_s$  is a **seasonal factor**,  $F_s = 1.0$  in summer (leaves); 2.5 in winter (no leaves)
- $F_h$  is the receive antenna height factor,  $F_h = (h/3)^{0.46}$  (*h* is the receive antenna height in meters)
- $F_b$  is the beam-width factor,  $F_b = (b/17)^{-0.62}$  (b in degrees)
- $K_o$  and  $\gamma$  are regression coefficients,  $K_o = 10$ ;  $\gamma = -0.5$
- u is a lognormal variable which has zero dB mean and a std. 8 dB

#### IEEE 802.16 CMs – Doppler Spectrum

- In fixed wireless channels the Doppler PSD of the scattering component is mainly distributed around f = 0 Hz.
  - A rounded shape is used as a rough approximation



#### IEEE 802.16 CMs – Antenna Gain Reduction

- The gain due to the **directivity** can be reduced because of the **scattering**.
  - The effective gain is less than the actual gain.
- Denote  $\Delta G_{BW}$  as the Antenna Gain Reduction Factor.
  - Gaussian distributed random variable (truncated at 0 dB, i.e.,  $\Delta G_{\rm BW} \ge 0$ ) with a mean ( $\mu_{\rm grf}$ ) and std. ( $\sigma_{\rm grf}$ ) given by

$$\mu_{\rm grf} = -(0.53 + 0.1I)\ln(\beta/360) + (0.5 + 0.04I)(\ln(\beta/360))^2$$
  
$$\sigma_{\rm orf} = -(0.93 + 0.02I)\ln(\beta/360)$$

- $\beta$ : the beam-width (in degrees); I = 1 (winter) or I = -1 (summer)
- In the link budget calculation, if G is the gain of the antenna (dB), the effective gain of the antenna equals  $G \Delta G_{BW}$ .
  - If a 20-degree antenna is used, the mean of  $\Delta G_{BW} \approx 7 \text{ dB}$ .

## IEEE 802.16 CMs – Modified SUI CMs

- Stanford University Interim (SUI) channel models
- The parametric view of the SUI channels is summarized in the following tables.

| SUI Channels | Terrain Type | Delay Spread | Doppler Spread | K-Factor |
|--------------|--------------|--------------|----------------|----------|
| SUI-1        | С            | Low          | Low            | High     |
| SUI-2        | С            | Low          | Low            | High     |
| SUI-3        | В            | Low          | Low            | Low      |
| SUI-4        | В            | Moderate     | High           | Low      |
| SUI-5        | А            | High         | Low            | Low      |
| SUI-6        | А            | High         | High           | Low      |

Prof. Tsai

193

## IEEE 802.16 CMs – SUI - 1 Channel Model

| SUI - 1                                         | Tap 1                                                          | Tap 2                  | Tap 3        | Units |
|-------------------------------------------------|----------------------------------------------------------------|------------------------|--------------|-------|
| Delay                                           | 0                                                              | 0.4                    | 0.9          | μs    |
| Power (omni ant.)                               | 0                                                              | -15                    | -20          | dB    |
| 90 % K-fact.                                    | 4                                                              | 0                      | 0            |       |
| 75 % K-fact.                                    | 20                                                             | 0                      | 0            |       |
| Power (30° ant.)                                | 0                                                              | -21                    | -32          | dB    |
| 90 % K-fact.                                    | 16                                                             | 0                      | 0            |       |
| 75 % K-fact.                                    | 72                                                             | 0                      | 0            |       |
| Doppler                                         | 0.4                                                            | 0.3                    | 0.5          | Hz    |
| <b>Antenna Correlation:</b> ρ <sub>I</sub>      | $E_{\rm NV} = 0.7$                                             | Terrain Type:          | С            |       |
| <b>Gain Reduction Factor:</b>                   | <b>Omni antenna:</b> $\tau_{\rm RMS} = 0.111 \ \mu s$ ,        |                        |              |       |
| Normalization Factor:                           | overall <i>K</i> : <i>K</i> = 3.3 (90%); <i>K</i> = 10.4 (75%) |                        |              |       |
| $F_{omni} = -0.1771 \text{ dB}, F_{30^\circ} =$ | <b>30° antenna:</b> $\tau_{\rm RMS} = 0.042 \ \mu {\rm s},$    |                        |              |       |
|                                                 | overall $K: K =$                                               | 14.0 (90%); <i>K</i> = | = 44.2 (75%) |       |

## **3GPP 5G Channel Models**

Prof. Tsai

## **3GPP 5G Channel Models**

- Study on channel model for frequencies from 0.5 to 100 GHz
   3GPP TR 38.901 V16.0.0 (2019-10)
- The channel model is applicable for **link-level** and **system-level** simulations in the following conditions:
- For system level simulations, supported scenarios are
  - Urban microcell street canyon (UMi)
  - Urban macrocell (UMa)
  - Rural macrocell (RMa)
  - Indoor hotspot office (InH)
  - Indoor factory (InF)
- Bandwidth is supported up to 10% of the center frequency but no larger than 2GHz.

#### Path Loss

- The distance definitions includes 3D distance and 2D distance
  - Outdoor UEs:  $d_{2D}$ ,  $d_{3D}$
  - Indoor UEs:  $d_{2D-out}$ ,  $d_{2D-in}$ ,  $d_{3D-out}$ ,  $d_{3D-in}$



 $d_{2D}$  and  $d_{3D}$  for outdoor UTs  $d_{2D-out}$ ,  $d_{2D-in}$  and  $d_{3D-out}$ ,  $d_{3D-in}$  for indoor UTs

Prof. Tsai

197

#### Path Loss (Cont.)

• RMa

|     |      | $PL_{\text{RMa-LOS}} = \begin{cases} PL_1 & 10\text{m} \le d_{2\text{D}} \le d_{\text{BP}} \\ PL_2 & d_{\text{BP}} \le d_{2\text{D}} \le 10\text{km} \end{cases}, \text{ see note 5}$                                                                                                                                                                                                                                                                     |                                          | $h_{\rm BS} = 35 { m m}$<br>$h_{\rm UT} = 1.5 { m m}$                                               |
|-----|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-----------------------------------------------------------------------------------------------------|
|     | ros  | $PL_{1} = 20 \log_{10}(40\pi d_{3D}f_{c}/3) + \min(0.03h^{1.72},10) \log_{10}(d_{3D})$ $-\min(0.044h^{1.72},14.77) + 0.002 \log_{10}(h)d_{3D}$ $PL_{2} = PL_{1}(d_{BP}) + 40 \log_{10}(d_{3D}/d_{BP})$                                                                                                                                                                                                                                                    | $\sigma_{ m SF}=4$<br>$\sigma_{ m SF}=6$ | W = 20m<br>h = 5m<br>h = avg. building height<br>W = avg. street width<br>The applicability ranges: |
| RMa | SOJN | $PL_{\text{RMa-NLOS}} = \max(PL_{\text{RMa-LOS}}, PL'_{\text{RMa-NLOS}})$<br>for $10 \text{ m} \le d_{2D} \le 5 \text{ km}$ $PL_{\text{NLOS}} \ge PL_{\text{LOS}}$<br>$PL'_{\text{RMa-NLOS}} = 161.04 - 7.1 \log_{10}(W) + 7.5 \log_{10}(h)$<br>$-(24.37 - 3.7(h/h_{\text{BS}})^2) \log_{10}(h_{\text{BS}})$<br>$+(43.42 - 3.1 \log_{10}(h_{\text{BS}}))(\log_{10}(d_{3D}) - 3)$<br>$+ 20 \log_{10}(f_c) - (3.2(\log_{10}(11.75h_{\text{UT}}))^2 - 4.97)$ | $\sigma_{\rm SF}=8$                      | $5m \le h \le 50m$<br>$5m \le W \le 50m$<br>$10m \le h_{BS} \le 150 m$<br>$1m \le h_{UT} \le 10m$   |

## Path Loss (Cont.)

• UMa

|     | SOJ  | $PL_{\text{UMa-LOS}} = \begin{cases} PL_1 & 10\text{m} \le d_{2\text{D}} \le d'_{\text{BP}} \\ PL_2 & d'_{\text{BP}} \le d_{2\text{D}} \le 5\text{km} \text{, see note 1} \end{cases}$ $PL_1 = 28.0 + 22\log_{10}(d_{3\text{D}}) + 20\log_{10}(f_c)$ $PL_2 = 28.0 + 40\log_{10}(d_{3\text{D}}) + 20\log_{10}(f_c)$ | $\sigma_{\rm SF}=4$   | $1.5m \le h_{\rm UT} \le 22.5m$<br>$h_{\rm BS} = 25m$                                                           |
|-----|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------------------------------------------------------------------------------------------------------------|
| JMa |      | $-9\log_{10}((d'_{\rm BP})^2 + (h_{\rm BS} - h_{\rm UT})^2)$                                                                                                                                                                                                                                                       |                       |                                                                                                                 |
| D   | SOLN | $PL_{\text{UMa-NLOS}} = \max(PL_{\text{UMa-LOS}}, PL'_{\text{UMa-NLOS}})$<br>for $10 \text{ m} \le d_{2\text{D}} \le 5 \text{ km}$<br>$PL'_{\text{UMa-NLOS}} = 13.54 + 39.08 \log_{10}(d_{3\text{D}}) + 20 \log_{10}(f_c) - 0.6(h_{\text{UT}} - 1.5)$                                                              | $\sigma_{\rm SF}=6$   | $1.5 \text{m} \le h_{\text{UT}} \le 22.5 \text{m}$<br>$h_{\text{BS}} = 25 \text{m}$<br>Explanations: see note 3 |
|     |      | Optional $PL = 32.4 + 20 \log_{10}(f_c) + 30 \log_{10}(d_{3D})$                                                                                                                                                                                                                                                    | $\sigma_{\rm SF}=7.8$ |                                                                                                                 |

Prof. Tsai

199

## Path Loss (Cont.)

• UMi

| UMi - Street Canyon | SOT  | $\begin{split} PL_{\text{UMi-LOS}} = \begin{cases} PL_{1} & 10\text{m} \le d_{2\text{D}} \le d'_{\text{BP}} \\ PL_{2} & d'_{\text{BP}} \le d_{2\text{D}} \le 5\text{km} \text{, see note 1} \end{cases} \\ \\ PL_{1} = 32.4 + 21\log_{10}(d_{3\text{D}}) + 20\log_{10}(f_{c}) \\ PL_{2} = 32.4 + 40\log_{10}(d_{3\text{D}}) + 20\log_{10}(f_{c}) \\ & -9.5\log_{10}((d'_{\text{BP}})^{2} + (h_{\text{BS}} - h_{\text{UT}})^{2}) \end{split}$ | $\sigma_{ m SF}=4$    | $1.5 \text{m} \le h_{\text{UT}} \le 22.5 \text{m}$<br>$h_{\text{BS}} = 10 \text{m}$                                          |
|---------------------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|------------------------------------------------------------------------------------------------------------------------------|
|                     | SOLN | $\begin{aligned} PL_{\rm UMi-NLOS} &= \max(PL_{\rm UMi-LOS}, PL'_{\rm UMi-NLOS}) \\ & \text{for } 10\mathrm{m} \le d_{\rm 2D} \le 5\mathrm{km} \\ \\ PL'_{\rm UMi-NLOS} &= 35.3\log_{10}(d_{\rm 3D}) + 22.4 \\ &+ 21.3\log_{10}(f_c) - 0.3(h_{\rm UT} - 1.5) \end{aligned}$                                                                                                                                                                  | $\sigma_{ m SF}=7.82$ | $1.5 \mathrm{m} \le h_{\mathrm{UT}} \le 22.5 \mathrm{m}$<br>$h_{\mathrm{BS}} = 10 \mathrm{m}$<br>Explanations: see note<br>4 |

## LOS/NLOS Scenarios

#### The LOS/NLOS scenarios are probabilistic with probabilities

| Scenario     | LOS probability (distance is in meters)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RMa          | $\Pr_{\text{LOS}} = \begin{cases} 1 , d_{2\text{D-out}} \le 10\text{m} \\ \exp\left(-\frac{d_{2\text{D-out}} - 10}{1000}\right) , 10\text{m} < d_{2\text{D-out}} \end{cases}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| UMi - Street | $\int 1$ , $d_{2D,out} \leq 18m$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| canyon       | $\Pr_{\text{LOS}} = \begin{cases} \frac{18}{d_{2\text{D-out}}} + \exp\left(-\frac{d_{2\text{D-out}}}{36}\right) \left(1 - \frac{18}{d_{2\text{D-out}}}\right) & ,18\text{m} < d_{2\text{D-out}} \end{cases}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| UMa          | $\int d_{2\text{D-out}} \leq 18\text{m}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|              | $\Pr_{\text{LOS}} = \left\{ \left[ \frac{18}{d_{\text{2D-out}}} + \exp\left(-\frac{d_{\text{2D-out}}}{63}\right) \left(1 - \frac{18}{d_{\text{2D-out}}}\right) \right] \left(1 + C'(h_{\text{UT}}) \frac{5}{4} \left(\frac{d_{\text{2D-out}}}{100}\right)^3 \exp\left(-\frac{d_{\text{2D-out}}}{150}\right) \right) , 18\text{m} < d_{\text{2D-out}} < \frac{1}{2} \left(1 + \frac{1}{2}\right)^3 \left(1$ |
|              | where                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|              | $\int 0$ , $h_{\rm UT} \le 13 { m m}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|              | $C'(h_{\rm UT}) = \left\{ \left(\frac{h_{\rm UT} - 13}{10}\right)^{1.5} , 13m < h_{\rm UT} \le 23m \right\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Prof. Tsai   | 201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

Prof. Tsai

## Shadowing

- The log-normal shadowing fading (in dB) is characterized by a • Gaussian distributed random variable with zero mean and standard deviation  $\sigma$ .
- Due to the slow fading process versus distance  $\Delta x$ , adjacent ٠ fading values are correlated.
- Its normalized autocorrelation function  $R(\Delta x)$  can be described • by an exponential function

$$R(\Delta x) = \exp\left(-\left|\Delta x\right|/d_{cor}\right)$$

 $- d_{cor}$ : the decorrelation length, which depends on the environment

## System-level Model/Link-level Model

- The **system-level model** is a **multi-link** physical model intended for **performance evaluation** 
  - Each link represents a cell or a sector within a cell.
  - An MS receives interference from adjacent sectors of adjacent cells.
- Each link comprises an MS and BS MIMO antenna array
- Propagation is via **multipaths** and **sub-paths**.
  - The excess delays of **sub-paths** are closely clustered **around the delay of their (parent) multipath**.
  - This is assumed to originate from an environment with **closely spaced clusters of scatterers**.



## Coordinate System

- The space is defined by the zenith angle θ (0° 180°) and the azimuth angle φ (0° 360°) in a Cartesian coordinate system
  - $\theta = 0^{\circ}$  points to the **zenith** and  $\theta = 90^{\circ}$  points to the **horizon**.



#### Generate Cluster Delays

- Delays are drawn randomly from the exponential delay distribution  $\tau'_n = -r_\tau DS \ln(X_n)$ 
  - $-r_{\tau}$  is the delay distribution proportionality factor
  - DS: rms delay spread
  - $X_n$ : **uniformly** distributed within (0,1)
- For *X* follows the uniform distribution within (0,1),  $Y = -\ln X$  is exponentially distributed with the pdf  $f(y) = e^{-y}$  and E[Y] = 1
  - $\tau'_n$  follows the **exponential distribution** with mean  $r_{\tau}$ DS
- Normalize the delays by subtracting the minimum delay (only the relative delays are important) and sort the normalized delays in an ascending order

$$\tau_n = \operatorname{sort}(\tau'_n - \min(\tau'_n))$$

### Generate Cluster Powers

- Cluster powers are calculated assuming a single slope **exponential** power delay profile.
- With exponential delay distribution the cluster powers are determined by  $P'_{n} = \exp\left(-\frac{\tau_{n}}{r_{r}}\frac{r_{\tau}-1}{r_{r}}\right) \times \frac{10^{-Z_{n}/10}}{r_{r}}$ Log-normal shadowing

- where  $Z_n \sim N(0, \zeta^2)$  is the per cluster **shadowing** term in dB

- Normalize the cluster powers so that the sum of all cluster powers is equal to one, i.e.,  $P_n = P'_n / \sum_{n=1}^{N} P'_n$
- In the case of LOS condition:
  - Power of the single LOS ray is:  $P_{1,LOS} = K_R / (K_R + 1)$

- The cluster powers are 
$$P_n = \frac{1}{K_R + 1} \times \left( \frac{P'_n}{\sum_{n=1}^N P'_n} \right)$$

 $-K_{\rm R}$  is the Ricean K-factor

Prof. Tsai

207

#### Generate Departure and Arrival Angles

• For the *n*-th NLOS cluster, the AOA of the cluster  $\phi_{n,AOA}$  is randomly generated centering on the AOA of LOS

- Depending on the Azimuth angle Spread of Arrival (ASA)

• The AOAs are determined by applying the inverse Gaussian function with input parameters  $P_n$  and RMS angle spread ASA

$$\phi'_{n,AOA} = \frac{2(ASA/1.4)\sqrt{-\ln[P_n/\max(P_n)]}}{C}$$
 For a cluster closed to

 $-P_n$  is the power of the *n*-th NLOS cluster the LOS, it generally has a larger cluster power

-  $C_{\phi}$  is a scaling factor related to the total number of clusters

$$\phi_{n,\text{AOA}} = X_n \phi_{n,\text{AOA}}' + Y_n + \phi_{\text{LOS,AOA}}$$

- $X_n$ : a random variable equiprobable within the set  $\{1, -1\}$
- $-Y_n \sim N(0, (ASA/7)^2)$  and  $\phi_{\text{LOS,AOA}}$  is the LOS direction

## Generate Departure and Arrival Angles (Cont.)

- Generate the azimuth angle of arrival (AOA) for the *m*-th ray in the *n*-th cluster:  $\phi_{n,m,AOA} = \phi_{n,AOA} + c_{ASA}\alpha_m$ 
  - $-c_{ASA}$  is the **cluster-wise** rms azimuth spread of arrival angles
- The generation of AOD ( $\phi_{n,m,AOD}$ ), ZOA ( $\theta_{n,m,AOA}$ ), and ZOD ( $\theta_{n,m,AOD}$ ) follows a procedure similar to that for AOA.

|         | Ray number <i>m</i> | <b>Basis vector of offset angles</b> $\alpha_m$ |
|---------|---------------------|-------------------------------------------------|
| Cluster | 1, 2                | $\pm 0.0447$                                    |
|         | 3, 4                | $\pm 0.1413$                                    |
|         | 5,6                 | ± 0.2492                                        |
|         | 7, 8                | $\pm 0.3715$                                    |
| untpath | 9, 10               | ± 0.5129                                        |
|         | 11, 12              | <u>± 0.6797</u>                                 |
|         | 13, 14              | $\pm 0.8844$                                    |
|         | 15, 16              | <u>+</u> 1.1481                                 |
|         | 17, 18              | ± 1.5195                                        |
|         | 19, 20              | ± 2.1551                                        |

Prof. Tsai

209

#### Coupling of Rays within a Cluster

- Couple **randomly AOD** angles  $\phi_{n,m,AOD}$  with **AOA** angles  $\phi_{n,m,AOA}$  within a cluster *n*.
- Couple **randomly ZOD** angles  $\theta_{n,m,AOD}$  with **ZOA** angles  $\theta_{n,m,AOA}$  within a cluster *n*.
- Couple **randomly AOD** angles  $\phi_{n,m,AOD}$  with **ZOD** angles  $\theta_{n,m,AOD}$  within a cluster *n*.

## **Cross Polarization Power Ratios**

- Generate the cross polarization power ratios (XPR)  $\kappa$  for each ray *m* of each cluster *n*.
  - XPR is log-Normal distributed

$$_{n,m} = 10^{X_{n,m}/10}$$

- where  $X_{n,m} \sim N(\mu_{XPR}, \sigma_{XPR}^2)$  is **Gaussian** distributed
- In general, co-polarization represents the polarization the antenna is intended to radiate (or receive) and crosspolarization represents the polarization orthogonal to the copolarization
- When **cross-polarized panel array antenna** is used, different polarization antennas have different but correlated received powers

Prof. Tsai

211

#### **Initial Random Phases**

- Draw random initial phases  $\{\Phi_{n,m}^{\theta\theta}, \Phi_{n,m}^{\theta\phi}, \Phi_{n,m}^{\phi\theta}, \Phi_{n,m}^{\phi\phi}\}\$  for each ray *m* of each cluster *n* 
  - Four polarization combinations ( $\theta\theta$ ,  $\theta\phi$ ,  $\phi\theta$ ,  $\phi\phi$ ) (AOD/AOA pair)
  - Uniformly distributed within  $(-\pi, \pi)$

## Generate Channel Coefficients

- The method can be used for drop-based evaluations
   Irrespective of user speed
- For the N-2 weakest (NLOS) (i.e., 3, 4, ..., N) clusters, the channel coefficients, for each receiver (UE) and transmitter (BS) element pair (u, s), are given by Coupling between polarization

Sum of M raysUE antenna patterncomponents with random phases
$$H_{u,s,n}^{\text{NLOS}}(t) = \sqrt{\frac{P_n}{M}} \sum_{m=1}^{M} \begin{bmatrix} F_{rx,u,\theta}(\theta_{n,m,ZOA}, \phi_{n,m,AOA}) \\ F_{rx,u,\theta}(\theta_{n,m,ZOA}, \phi_{n,m,AOA}) \end{bmatrix}^{\text{T}} \begin{bmatrix} \exp(j\Phi_{n,m}^{\theta\theta}) & \sqrt{\kappa_{n,m}^{-1}} \exp(j\Phi_{n,m}^{\theta\theta}) \\ \sqrt{\kappa_{n,m}^{-1}} \exp(j\Phi_{n,m}^{\theta\theta}) & \exp(j\Phi_{n,m}^{\theta\theta}) \end{bmatrix}$$
 $\begin{bmatrix} F_{tx,s,\theta}(\theta_{n,m,ZOD}, \phi_{n,m,AOD}) \\ F_{tx,s,\phi}(\theta_{n,m,ZOD}, \phi_{n,m,AOD}) \end{bmatrix} \exp\left(\frac{j2\pi \mathbf{r}_{rx,n,m}^{\text{T}} \cdot \mathbf{d}_{rx,u}}{\lambda_0}\right) \exp\left(\frac{j2\pi \mathbf{r}_{tx,n,m}^{\text{T}} \cdot \mathbf{d}_{tx,s}}{\lambda_0}\right) \exp\left(\frac{j2\pi \mathbf{r}_{rx,n,m}^{\text{T}} \cdot \mathbf{v}t}{\lambda_0}\right)$ BS antenna patternPhase offset of UE antenna uProf. Tsai213

## Generate Channel Coefficients (Cont.)

- rx: receiver (UE); tx: transmitter (BS)
- $F_{rx,u,\theta}$  and  $F_{rx,u,\phi}$  are the **field patterns** of receive antenna element u, corresponding to  $\theta$  and  $\phi$ , respectively.
- $F_{tx,s,\theta}$  and  $F_{tx,s,\phi}$  are the **field patterns** of transmit antenna element s, corresponding to  $\theta$  and  $\phi$ , respectively.
- $\mathbf{r}_{rx,n,m}$  is the **spherical unit vector** with azimuth arrival angle  $\phi_{n,m,AOA}$  and elevation arrival angle  $\theta_{n,m,ZOA}$
- $\mathbf{r}_{tx,n,m}$  is the **spherical unit vector** with azimuth arrival angle  $\phi_{n,m,AOD}$  and elevation arrival angle  $\theta_{n,m,ZOD}$
- $-\mathbf{d}_{rx,u}$  is the **location vector** of receive antenna element u
- $\mathbf{d}_{tx,s}$  is the **location vector** of transmit antenna element s
- **v** is the UE **velocity vector** with speed v
- $-\lambda_0$  is the **wavelength** of the carrier frequency

### Generate Channel Coefficients (Cont.) – NLOS

- For the "two strongest clusters" (i.e., *n* = 1 and 2) with NLOS, rays are spread in delay to three sub-clusters (per cluster)
  - $\tau_{n,1} = \tau_n; \quad \tau_{n,2} = \tau_n + 1.28 c_{DS}; \quad \tau_{n,3} = \tau_n + 2.56 c_{DS}$
  - $-c_{\rm DS}$  is the cluster delay spread
- Twenty rays of a cluster are mapped to sub-clusters



## Generate Channel Coefficients (Cont.) - NLOS

• Then, the channel impulse response is given by:

$$H_{u,s}^{\text{NLOS}}(\tau,t) = \sum_{n=1}^{2} \sum_{i=1}^{3} \sum_{m \in R_{i}} H_{u,s,n,m}^{\text{NLOS}}(t) \delta(\tau - \tau_{n,i}) + \sum_{n=3}^{N} H_{u,s,n}^{\text{NLOS}}(t) \delta(\tau - \tau_{n})$$

(u, s): UE and BS antenna element pair

• The channel coefficients for the two strongest clusters are

$$H_{u,s,n,m}^{\text{NLOS}}(t) = \sqrt{\frac{P_n}{M}} \begin{bmatrix} F_{rx,u,\theta} \left(\theta_{n,m,\text{ZOA}}, \phi_{n,m,\text{AOA}}\right) \\ F_{rx,u,\theta} \left(\theta_{n,m,\text{ZOA}}, \phi_{n,m,\text{AOA}}\right) \end{bmatrix}^{\text{T}} \begin{bmatrix} \exp\left(j\Phi_{n,m}^{\theta\theta}\right) & \sqrt{\kappa_{n,m}^{-1}} \exp\left(j\Phi_{n,m}^{\theta\phi}\right) \\ \sqrt{\kappa_{n,m}^{-1}} \exp\left(j\Phi_{n,m}^{\phi\theta}\right) & \exp\left(j\Phi_{n,m}^{\phi\phi}\right) \end{bmatrix} \\ \begin{bmatrix} F_{tx,s,\theta} \left(\theta_{n,m,\text{ZOD}}, \phi_{n,m,\text{AOD}}\right) \\ F_{tx,s,\theta} \left(\theta_{n,m,\text{ZOD}}, \phi_{n,m,\text{AOD}}\right) \end{bmatrix} \exp\left(\frac{j2\pi \mathbf{r}_{rx,n,m}^{\text{T}} \cdot \mathbf{d}_{rx,u}}{\lambda_0}\right) \exp\left(\frac{j2\pi \mathbf{r}_{tx,n,m}^{\text{T}} \cdot \mathbf{d}_{tx,s}}{\lambda_0}\right) \exp\left(\frac{j2\pi \mathbf{r}_{rx,n,m}^{\text{T}} \cdot \mathbf{v}t}{\lambda_0}\right) \end{bmatrix}$$
## Generate Channel Coefficients (Cont.) – LOS

• For the LOS case, the LOS channel coefficient is given as:

$$H_{u,s,1}^{\text{LOS}}(t) = \sqrt{\frac{P_n}{M}} \begin{bmatrix} F_{rx,u,\theta} \left(\theta_{\text{LOS},\text{ZOA}}, \phi_{\text{LOS},\text{AOA}}\right) \\ F_{rx,u,\theta} \left(\theta_{\text{LOS},\text{ZOA}}, \phi_{\text{LOS},\text{AOA}}\right) \end{bmatrix}^{\text{T}} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} F_{tx,s,\theta} \left(\theta_{\text{LOS},\text{ZOD}}, \phi_{\text{LOS},\text{AOD}}\right) \\ F_{tx,s,\theta} \left(\theta_{\text{LOS},\text{ZOD}}, \phi_{\text{LOS},\text{AOD}}\right) \end{bmatrix}$$
$$\exp\left(\frac{-j2\pi d_{3D}}{\lambda_0}\right) \exp\left(\frac{j2\pi \mathbf{r}_{rx,\text{LOS}}^{\text{T}} \cdot \mathbf{d}_{rx,u}}{\lambda_0}\right) \exp\left(\frac{j2\pi \mathbf{r}_{rx,\text{LOS}}^{\text{T}} \cdot \mathbf{d}_{tx,s}}{\lambda_0}\right) \exp\left(\frac{j2\pi \mathbf{r}_{rx,\text{LOS}}^{\text{T}} \cdot \mathbf{v}t}{\lambda_0}\right)$$

# Phase offset due to propagation

- $d_{3D}$  is the 3D distance between Tx and Rx
- Then, the channel impulse response is given by:

$$H_{u,s}^{\text{LOS}}(\tau,t) = \sqrt{\frac{1}{K_{\text{R}}+1}} H_{u,s}^{\text{NLOS}}(\tau,t) + \sqrt{\frac{K_{\text{R}}}{K_{\text{R}}+1}} H_{u,s,1}^{\text{LOS}}(t) \delta(\tau-\tau_{1})$$

 $-K_{\rm R}$  is the Ricean K-factor

Prof. Tsai

# CDL Channel Models

- The CDL (**Clustered Delay Line**) channel models are defined for the full frequency range from 0.5 GHz to 100 GHz with a maximum bandwidth of **2 GHz**.
- Three CDL models, **CDL-A**, **CDL-B** and **CDL-C**, are constructed to represent three **NLOS** channel profiles
- Two models, CDL-D and CDL-E, are constructed for LOS
- Each CDL model can be **scaled in delay** so that the model achieves a desired **RMS delay spread**
- Each CDL model can also be **scaled in angles** so that the model achieves desired **angle spreads**

**RMS delay spread** and **angle spreads** can be set according to the environment

217

#### CDL Channel Model Generation

- The following step by step procedure should be used to generate channel coefficients using the CDL models.
- Step 1: Generate departure and arrival angles
- Step 2: Coupling of rays within a cluster for both azimuth and elevation
- Step 3: Generate the cross polarization power ratios
- Step 4: Coefficient generation

Prof. Tsai

219

#### Generate Departure and Arrival Angles

- For the *n*-th NLOS cluster, the AOA of the cluster  $\phi_{n,AOA}$  is **pre-defined** in the CDL channel models
- Generate the azimuth angle of arrival (AOA) for the *m*-th ray in the *n*-th cluster:  $\phi_{n,m,AOA} = \phi_{n,AOA} + c_{ASA}\alpha_m$
- The generation of AOD ( $\phi_{n,m,AOD}$ ), ZOA ( $\theta_{n,m,AOA}$ ), and ZOD ( $\theta_{n,m,AOD}$ ) follows a procedure similar to that for AOA.

| Ray number <i>m</i> | <b>Basis vector of offset angles</b> $\alpha_m$ |
|---------------------|-------------------------------------------------|
| 1, 2                | <u>± 0.0447</u>                                 |
| 3,4                 | ± 0.1413                                        |
| 5,6                 | <u>+</u> 0.2492                                 |
| 7, 8                | <u>± 0.3715</u>                                 |
| 9, 10               | <u>+</u> 0.5129                                 |
| 11, 12              | <u>+</u> 0.6797                                 |
| 13, 14              | <u>± 0.8844</u>                                 |
| 15, 16              | <u>± 1.1481</u>                                 |
| 17, 18              | <u>+</u> 1.5195                                 |
| 19, 20              | <u>+</u> 2.1551                                 |

## Generate Departure and Arrival Angles (Cont.)

- Each path is comprised of 20 equal powered sub-path components, spaced with increasing angle from the center.
- The summing of the sub-path carriers results in **Rayleigh** fading of each multipath.



#### Generate Departure and Arrival Angles (Cont.)

| CDL-A | Cluster #                  | Normaliz         | ed delay         | Power in [dB]                                       |       | AOD in [°]                |        | AOA in [°]                     |     | ZOD in [°]             |    | ZOA in [°] |  |
|-------|----------------------------|------------------|------------------|-----------------------------------------------------|-------|---------------------------|--------|--------------------------------|-----|------------------------|----|------------|--|
|       | 1                          | 0.00             | 000              | -13.4                                               |       | -178.1                    |        | 51.3                           |     | 50.2                   |    | 125.4      |  |
|       | 2                          | 0.38             | 319              | 0                                                   |       | -4.2                      |        | -152.7                         |     | 93.2                   |    | 91.3       |  |
|       | 3                          | 0.40             | )25              | -2.2                                                |       | -4.2                      |        | -152.7                         |     | 93.2                   |    | 91.3       |  |
|       | 4                          | 0.58             | 368              | -4                                                  |       | -4.2                      |        | -152.7                         |     | 93.2                   |    | 91.3       |  |
|       | 5                          | 0.46             | 510              | -6                                                  |       | 90.2                      |        | 76.6                           |     | 122                    |    | 94         |  |
|       | 6                          | 0.53             | 575              | -8.2                                                |       | 90.2                      |        | 76.6                           |     | 122                    |    | 94         |  |
|       | 7                          | 0.67             | '08              | -9.9                                                | -9.9  | 90.2                      | 76.6   |                                | 122 |                        | 94 |            |  |
|       | 8                          | 0.57             | '50              | -10.5                                               |       | 121.5                     |        | -1.8                           |     | 150.2                  |    | 47.1       |  |
|       | 9                          | 0.76             | 518              | _                                                   | -7.5  | -81.7                     |        | -41.9                          |     | 55.2                   |    | 56         |  |
|       | 10                         | 1.53             | 575              | -15.9<br>-6.6                                       |       | <u>158.4</u><br>-83       |        | 94.2<br>51.9                   |     | 26.4<br>126.4          |    | 30.1       |  |
|       | 11                         | 1.89             | 978              |                                                     |       |                           |        |                                |     |                        |    | 58.8       |  |
|       | 12                         | 2.22             | 242              | -16.7                                               |       | 134.8                     |        | -115.9                         |     | 171.6                  |    | 26         |  |
|       | 13                         | 2.17             | '18              | -12.4                                               |       | -153                      |        | 26.6                           |     | 151.4                  |    | 49.2       |  |
|       | 14                         | 2.49             | 942              | -15.2                                               |       | -172                      |        | 76.6                           |     | 157.2                  |    | 143.1      |  |
|       | 15                         | 2.51             | 2.5119           |                                                     | -10.8 |                           | -129.9 |                                | -7  |                        |    | 117.4      |  |
|       | 16                         | 3.0582           |                  | -11.3                                               |       | -136                      |        | -23                            |     | 40.4                   |    | 122.7      |  |
|       | 17                         | 4.0810           |                  | -12.7                                               |       | 165.4                     |        | -47.2                          |     | 43.3                   |    | 123.2      |  |
|       | 18                         | 4.4579<br>4.5695 |                  | -16.2<br>-18.3                                      |       | <u>148.4</u><br>132.7     |        | 110.4<br>144.5                 |     | 161.8<br>10.8          |    | 32.6       |  |
|       | 19                         |                  |                  |                                                     |       |                           |        |                                |     |                        |    | 27.2       |  |
|       | 20                         | 4.79             | 966              | -18.9<br>-16.6<br>-19.9                             |       | -118.6<br>-154.1<br>126.5 |        | 155.3<br>102<br>-151.8         |     | 16.7<br>171.7<br>22.7  |    | 15.2       |  |
|       | 21                         | 5.00             | )66              |                                                     |       |                           |        |                                |     |                        |    | 146        |  |
|       | 22                         | 5.30             | )43              |                                                     |       |                           |        |                                |     |                        |    | 150.7      |  |
|       | 23                         | 9.65             | 586              |                                                     | 29.7  | -56.2                     |        | 55.2                           |     | 144.9                  |    | 156.1      |  |
|       | Per-Cluster Parameters     |                  |                  |                                                     |       |                           |        |                                |     |                        |    |            |  |
|       | Parameter C <sub>ASI</sub> |                  | $c_{\rm ASD}$ in | $1 \begin{bmatrix} \circ \end{bmatrix} = c_{ASA} i$ |       | n [°] c <sub>zsi</sub>    |        | $c_{\rm D}$ in [°] $c_{\rm Z}$ |     | <sub>SA</sub> in [°] X |    | PR in [dB] |  |
|       | Val                        | 5                | 5                |                                                     |       | 1 3                       |        |                                | 3   |                        | 10 |            |  |

#### Coupling of Rays within a Cluster

- Couple **randomly AOD** angles  $\phi_{n,m,AOD}$  with **AOA** angles  $\phi_{n,m,AOA}$  within a cluster *n*.
- Couple randomly ZOD angles  $\theta_{n,m,AOD}$  with ZOA angles  $\theta_{n,m,AOA}$  within a cluster *n*.
- Couple **randomly AOD** angles  $\phi_{n,m,AOD}$  with **ZOD** angles  $\theta_{n,m,AOD}$  within a cluster *n*.

Prof. Tsai

223

#### **Cross Polarization Power Ratios**

- Generate the **cross polarization power ratios** (XPR) *κ* for each ray *m* of each cluster *n*.
  - XPR is log-Normal distributed

$$\kappa_{n,m}=10^{X/10}$$

- where X is a pre-defined per-cluster XPR in dB
- CDL-A: 10 dB
- CDL-B: 8 dB
- CDL-C: 7 dB
- CDL-D: 11 dB
- CDL-E: 8 dB

#### Gain Coefficient Generation

- All clusters are treated as "weaker cluster", i.e. no further subclusters in delay should be generated.
- Draw random initial phases  $\{\Phi_{n,m}^{\theta\theta}, \Phi_{n,m}^{\theta\phi}, \Phi_{n,m}^{\phi\theta}, \Phi_{n,m}^{\phi\phi}\}\$  for each ray *m* of each cluster *n* 
  - Four polarization combinations ( $\theta\theta$ ,  $\theta\phi$ ,  $\phi\theta$ ,  $\phi\phi$ ) (AOD/AOA pair)
  - Uniformly distributed within  $(-\pi, \pi)$
- For the weaker (NLOS) clusters, the channel coefficients, for each UE and BS element pair (*u*, *s*), are given by