無線通訊系統 (Wireless Communications Systems)

國立清華大學電機系暨通訊工程研究所 蔡育仁 台達館 821 室 Tel: 62210 E-mail: yrtsai@ee.nthu.edu.tw

Prof. Tsai

Chapter 1 Introduction

Mobile Cellular Systems

Prof. Tsai

Mobile Communications Systems

- First generation (1G): analog systems (1980 ~)
 - AMPS US, NMT North Europe, TACS Europe, JTACS Japan
- 2G: digital systems (1992 ~)
 - High-tier systems: IS-136, IS-95 US, GSM Europe, PDC Japan
 - Low-tier systems: PACS US, DECT Europe, PHS Japan
- 3G: wideband transmission systems (2001 ~)
 - W-CDMA (3GPP) Europe, cdma2000 (3GPP2) US
- 4G: (2013 ~)
 - Evolve from datacom standards: OFDM WiMAX
 - Evolve from telecom standards: OFDM LET (3GPP Long-Term Evolution)
- 5G: (2022 ~)
 - OFDM, DFT-Spread OFDM

Mobile Cellular Communications Systems

- The advantages of cellular systems:
 - High spectral efficiency
 - Large system capacity
 - Limited cell coverage \Rightarrow reduce the transmission power
 - Flexibility
- The radio coverage, traffic distribution, and users behavior should be considered

Frequency Reuse

- Frequency assignment is the major issue in cellular systems
- For **fixed** frequency/channel assignment:
 - All channels are divided into several groups
- Frequency Reuse Factor: the number of channel groups
 - Both the number of channels per cell and the co-channel interference are **fixed**
 - Theoretically, $N = i^2 + i \times j + j^2$, *i* and *j* are non-negative integers $i \ge 0, j \ge 0, i+j \ge 1$

Prof. Tsai

Frequency Reuse (Cont.)

- **Co-channel reuse distance:** the minimum distance between any two co-channel base station (BS)
 - Co-channel BS: The BSs use the same frequency allocation
- For regular hexagonal cells, the co-channel reuse distance is $D = \sqrt{3NR}$
 - -R is the cell radius

- Based on the cosine rule $a^2 = b^2 + c^2 - 2bc \times \cos \alpha$

$$N = 7$$

7

Frequency Reuse (Cont.)

• Some possible theoretical frequency reuse factors

-	
(i, j) pair	Frequency Reuse Factor
(1,0) $(0,1)$	1
(1, 1)	3
(2,0) $(0,2)$	4
$(2,1) \cdot (1,2)$	7
(2, 2)	12
$(3,0) \cdot (0,3)$	9
$(3,1) \cdot (1,3)$	13
(3,2) $(2,3)$	19
(3, 3)	27

• In practice, the BSs may not be regularly distributed

 The frequency reuse factor is chosen based on the acceptable cochannel interference

Prof. Tsai

Frequency Reuse (Cont.)

- Frequency reuse factor N = 3
- Each cell uses 1/3 of the total bandwidth
 - All channels are divided into 3 groups

9

Frequency Reuse (Cont.)

- Assume that the total available bandwidth is divided into multiple channels, with the channel numbering 1, 2, 3, ...
- For N = 3, each cell uses one of the following channel sets:
 - Channel set 1: 1, 4, 7, ...
 - Channel set 2: 2, 5, 8, ...
 - **Channel set 3**: 3, 6, 9, ...
- For N = 4, each cell uses one of the following channel sets:
 - Channel set 1: 1, 5, 9, ...
 - Channel set 2: 2, 6, 10, ...
 - **Channel set 3**: 3, 7, 11, ...
 - **Channel set 4**: 4, 8, 12, ...
- For N > 1, adjacent channels are not used in the same cell

Omni-Directional and Sectored Cells (Cont.)

Prof. Tsai

Manhattan Microcell Frequency Reuse

- In an area with urban canyons:
 - The buildings act as waveguides to channel the signal energy along the street corridors
 - Co-channel interference can be significantly reduced
 - Signals are blocked by buildings

Manhattan microcell deployment

17

Multiple Access & Duplex

Prof. Tsai

Multiple Access

- In a **broadcast channel** (such as a wireless channel), one of the key issues is to determine who gets the right of using the channel when there is **competition** for it.
- In a synchronous system (with a central controller), the controlled-access (multiple access) techniques can be applied to prevent/reduce signal collision or mutual interference.
- In an **asynchronous** system, **random access techniques** should be used.

Multiple Access Techniques

- FDMA: Frequency Division Multiple Access
 - Divide a frequency band into multiple sub-bands
 - Generally, a guard band between two contiguous sub-bands is required
 - Generally, no self-interference is introduced
- **TDMA:** Time Division Multiple Access
 - Divide a time interval (frame) into multiple time-slots
 - A guard time between two contiguous time-slots is required
 - Generally, no self-interference is introduced
- CDMA: Code Division Multiple Access
 - Divide the spectral resource in the code domain
 - A set of low **cross-correlation** codes is needed
 - Self-interference is introduced among different signals

Prof. Tsai

FDMA & TDMA

21

Frequency Division Multiple Access

Prof. Tsai

Time Division Multiple Access

23

Duplex

- **Duplex** is a description of the communication capabilities between two connected devices that can communicate with each another in **both directions**.
- Conventionally, the transmissions of different signals must use **separate radio resources** to prevent mutual interference.
- **Simplex:** one-way communications
 - Paging system (Historically, two-way paging system is available)
- Half-duplex: two-way comm. (One-way at any time instant)
 - Dispatch communications system
- Full-duplex: two-way communications (at any time instant)

Question

• Assume that we have the frequency allocations for three systems A, B, C shown as follows:

• Questions:

- Is "A"("B" or "C") an FDD or TDD system?
- Is it possible that "A" is a TDD system?
- Is it possible that "C" is an FDD system?

GSM Frequency Bands

- Three major frequency bands are available for GSM standards.
- **Duplex distance:** The frequency separation between a pair of FDD channels. It is essential for preventing interference.
 - GSM-900: 45 MHz
 - DCS-1800: 95 MHz
 - PCS-1900: 80 MHz
- GSM carrier frequency spacing: 200 kHz

GSM Carrier Frequency Assignment

- GSM:
 - $Fl = 890 + n \times 0.2$ MHz, $0 \le n \le 124$
 - $Fl = 890 + (n 1024) \times 0.2$ MHz, $975 \le n \le 1023$
 - -Fu = Fl + 45 MHz
- DCS-1800:
 - *Fl* = 1710.2 + (*n* − 512) × 0.2 MHz, $512 \le n \le 885$

 In GSM systems, each time frame of a carrier is divided into 8 slots to support 8 users TDMA (a hybrid FDMA-TDMA scheme) 																		
 For supporting FDD duplex transmission, the transmissions of uplink and downlink are allocated the same time slot number 																		
 A timing offset is introduced to prevent simultaneous transmission/reception at mobile equipment 																		
At an MS	<		- fr	ame Rx	no.	N -			←		fra	me i Rx	no. 1	V+1		~~	ł	
Down-link	0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7	0	
							Tx								Tx			
Up-link	5	6	7	0	1	2	3	4	5	6	ħ	0	1	2	3	4	5	
				~		- fr	ame	no.	<u>N</u> -		/>	<		- frame no. $N+1$				
Down-link	0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7	0	
(Adjacent C	Cells)							Μ	lonit	or							

GSM Time Slot Assignment and Duplex (Cont.)

- Simultaneous transmission/reception at a node requires a highorder filter (**duplexer**) for preventing the interference from the transmitter to the receiver (because the same antenna is used)
 - Greatly increase the implementation complexity
 - The timing offset reduces the hardware complexity at mobile equipment
- By using TDMA, there are some free slots available for an MS to perform **signal measurement** (reception only)
 - In the handoff procedure, the signal strength of neighboring cells is essential information

4G/5G OFDM/OFDMA Systems

- 4G/5G systems use the orthogonal frequency division multiplexing (OFDM) technique
 - The whole band is divided into multiple sub-carriers
- Multiple data streams for different users can be simultaneously carried in the same band via allocating **different sets of sub-carriers** for transmission (OFD multiple access, **OFDMA**)
 - It can be regarded as a frequency-division multiplexing (FDM) scheme or an FDMA scheme

37

Prof. Tsai

dB Representation

Decibel (dB)

- The decibel (dB) is a relative unit used to express the ratio of one value to another on a logarithmic scale.
- It can be used to express an **absolute value**. In this case, it expresses the ratio of a value to a **fixed reference value**.
 - A suffix indicating the reference value is appended after dB
 - e.g., dBW, dBm, dBV
- The definition of dB is $X_{(dB)} = 10 \times \log_{10} (X)$
- The representation of dB can be used to expression a very large value or a very small (closed to 0) value

 - -100 dB = 0.0000000001
 - -2 = 3 dB; 3 = 4.771 dB; 5 = 7 dB

Prof. Tsai

39

Decibel (dB) (Cont.)

• Someone may question that there seems to be another expression of dB defined as

$$X_{\rm (dB)} = 20 \times \log_{10} \left(X \right)$$

- No! There is only one expression of dB:

$$X_{\rm (dB)} = 10 \times \log_{10} \left(X \right)$$

- In electrical circuits, power dissipation is proportional to the square of voltage or current when the impedance is constant.
 - The power gain level (in dB) is expressed as

$$G_{\rm (dB)} = 20 \times \log_{10} \left(V_{\rm out} / V_{\rm in} \right)$$

• However, the expression is due to

$$G_{(dB)} = 10 \times \log_{10} \left(V_{out}^2 / V_{in}^2 \right) = 10 \times \log_{10} \left(V_{out} / V_{in} \right)^2$$
$$= 20 \times \log_{10} \left(V_{out} / V_{in} \right)$$

Insertion Loss (Path Loss)

- P₀: the power delivered to a load when it is connected directly to the source (linear scale, W, mW, ...)
- P_L : the power delivered to a load from a source via a **channel**
- Insertion loss $L_I = 10 \log_{10} (P_0 / P_L) \, dB$
- $x \leftrightarrow y \, dB \Rightarrow y = 10 \log_{10} x$, e.g., $20 = 13 \, dB$

Insertion Loss (Path Loss) (Cont.)

- For example, if the transmit power is $P_{(dB)} = 0$ dBW (i.e., 1W), the channel bandwidth is B = 100 KHz, and the noise power spectral density is $N_0/2$ with $N_0 = -110$ dBW/Hz.
- If the propagation loss of the channel is L = 40 dB, the received signal power is

$$P_{\rm r(dB)} = 10 \times \log_{10} (P/L) = P_{\rm (dB)} - L_{\rm (dB)} = -40 \text{ dBW}$$

• The symbol energy is

$$E_{(dB)} = 10 \times \log_{10} (P_{r} \times T) = 10 \times \log_{10} (P_{r}/B)$$

= $P_{r(dB)} - B_{(dB)} = -40 - 50 = -90$ dB Joules (W/Hz)

• The received signal SNR is

$$(E/N_0)_{(dB)} = E_{(dB)} - N_{0(dB)} = -90 - (-110) = 20 \text{ dB}$$

Antenna

- An antenna system is used to **transmit and receive** the modulated carrier signal for wireless communications.
 - It may contain a single antenna (one antenna element or multiple antenna elements) or multiple antennas.
- The fundamental characteristics of an antenna are
 - Gain: The ratio of the maximum radiated power to the input power
 - Half power beamwidth: The angular separation between the half power points
 - Both can be described by the **antenna radiation pattern**
- The transmitting and receiving patterns of an antenna are **identical** at a given wavelength (the reciprocity theorem)

Prof. Tsai

45

Antenna (Cont.)

- Consider a **uniform linear antenna (ULA) arrays**, where multiple antenna elements are **evenly spaced** on a straight line.
- We also consider a free space propagation environment (no reflectors or scatterers), where only a direct signal path between the signal source and each receive antenna.
- The antenna separation is $\Delta < \lambda_c$ (in general $\Delta = \lambda_c/2$), λ_c is the wavelength and the distance $d \gg \lambda_c$

Antenna (Cont.)

- For a specific incidence direction, the receiver can **coherently combine** all the signals received on different antenna elements
 - Greatly enlarge the received signal strength \Rightarrow a **high** antenna gain
- If the source signal comes from other direction, all the received signals cannot be coherently combined, resulting a degradation in the receive signal strength → a small antenna gain

Antenna Radiation Pattern

- An antenna **radiation pattern** is a 3-D plot of its radiation far from the source.
 - It is defined by the **incidence direction** (θ and ϕ).
- Antenna radiation patterns usually take two forms:
 - The elevation pattern is a graph of the energy radiated from the antenna looking at it from the side (a) t^{z}_{θ}
 - The azimuth pattern is a graph of the energy radiated from the antenna looking at it from directly above the antenna (b)
- When you combine the two graphs, you have a 3-D representation of the antenna radiation pattern (c)

Vertical (Elevation) Antenna Radiation Pattern

Antenna Gain

- Antenna gain is a measure of how much of the input power is concentrated in a particular direction
 - **dBi:** Expressed with respect to an **isotropic antenna**, which radiates equally in **all directions** (not physically realizable)
 - Isotropic antenna gain: 1 (0 dB)
 - dBd: Expressed with respect to a half-wave dipole antenna
 - Half-wave dipole antenna gain: 1.64 (2.15 dB)

 $G \propto \frac{4\pi A_e}{\lambda_c^2}$, A_e is related to the physical size of the antenna

- Antenna directivity:
 - **Omni-directional antenna:** omni-directional in the **azimuth pattern**
 - Directional antenna: directional in the azimuth pattern

EIRP & ERP

• Effective isotropic radiated power (EIRP): (dBm or dBW)

$$EIRP = P_t - L_c + G_t$$

- where P_t is the transmission power in dBm or dBW, L_c is the cable loss in dB, and G_i is the antenna gain expressed in **dBi**
- The maximum radiated power available from a transmitter in the direction with the maximum antenna gain
- Compared to an isotropic antenna
- Effective radiated power (ERP): (dBm or dBW)

$$ERP = P_t - L_c + G_d$$

- where P_t is the transmission power in dBm or dBW, L_c is the cable loss in dB, and G_d is the antenna gain expressed in **dBd**
- Compared to a half-wave dipole antenna

Half Power Beamwidth

- The half-power beamwidth is
 - The **angular separation** between the half power points on the antenna radiation pattern
 - The half power points: the gain is one half of the maximum value

Question

- Question:
 - Why a directional (in vertical plane) antenna is generally used in the BS side?
 - Why an omni-directional antenna (such as the dipole antenna) is generally used in the MS side?
 - Can you imagine the antenna radiation pattern required for satellite mobile communications?

Question (Cont.)

• Handsets for satellite mobile communications

57

Massive MIMO Antennas

- Multiple-antenna (MIMO) technology is becoming mature for wireless communications.
- Basically, the more antennas the transmitter/receiver is equipped with, the better performance can be obtained.
- Massive MIMO Antennas use a very large number of service antennas that are operated fully coherently and adaptively.

- Feasible for operations in the millimeter-wave (mm-wave) bands

Massive MIMO Antennas (Cont.)

- In 5G systems, the massive MIMO antennas are configured to support beamforming transmission with multiple antenna panels
- Each antenna panel is denoted as $(M \times N \times P)$
 - -M: number of antenna rows
 - N: number of antenna columns
 - P: number of different polarizations
 - For example, $(4 \times 8 \times 2)$ array
- Each antenna panel can support a directional beam

Prof. Tsai

64 elements $(4 \times 8 \times 2)$

• Model No. GSMA065-18-0

Frequency	870-960MHz
Gain	16.5 ±0.5dBi (14.4 ±0.5dBd)
Input Impedance	50 ohms
VŚWR	1.4: 1 maximum
Polarisation	Vertical
Electrical downtilt	0°
Azimuth beamwidth	65° ±3°
Elevation beamwidth	8.9° ±0.6°
1st Upper sidelobe	-20dB typical, -15dB maximum
1st Null	First minimum below main beam >-21dB
Front/Back ratio	<u>>30dB</u>
Intermodulation	<-153dBc for 2 x 20W carriers
Input Power	500W at 40°C (continuous rating)
Input Connector	7/16-DIN
Mounting Interface	Wall or pole 2 - 4.5 in dia.
-	(48 - 115mm), c/w pan and tilt

Prof. Tsai

Model No. GSMA090)-12-6
Frequency	870 - 960MHz
Gain	14.6 ±0.5dBi (12.5 ±0.5dBd)
Input Impedance	50 ohms
VŚWR	1.4: 1 maximum
Polarisation	Vertical
Electrical downtilt	6°
Azimuth beamwidth	90° ±5°
Elevation beamwidth	15.1° ±1°
1st Upper sidelobe	<-16dB
	First null below elevation peak >-20dB
Front/Back ratio	<u>> 25dB</u>
Intermodulation	<-153dBc for 2 x 20W carriers
Input Power	50w AT 40°c (continuous rating) 📗
Input Connector	7/16-DIN
Mounting Interface	Wall or pole 2 - 4.5in diameter
-	(48 -115mm), c/w pan and tilt

•	Model No. GSMA090)-2	25-*
	Frequency		870 - 960MHz
	Gain		16.8 ±0.5dBi (14.7 ±0.5dBd)
	Input Impedance		50ohms
	VSWR		1.4: 1 maximum
	Polarisation		Vertical
	Electrical downtilt	*	0°, 6°
	Azimuth beamwidth		90° ±5°
	Elevation beamwidth		7.2° +0.7°
	1st Upper sidelobe 1st Null		<-19dB (except for 8° beamtilt model which is <-17dB) First minimum below main beam >-25dB
	Front/Back ratio		≥ 30dB
	Intermodulation		<-153dBc for 2 x 20W carriers
	Input Power		500W at 40°C (continuous rating)
	Input Connector		7/16-DIN
	Mounting Interface		Wall or pole 2 - 4.5in diameter
	-		(48 -115mm), c/w pan and tilt

•	Model No. PCNC360-25-*	
	Frequency	<u> 1710 - 1880 MHz</u>
	Gain	11 dBi
	Input Impedance	50 ohms
	VŚWR	1.4: 1 (1.5 : 1 for 0 ° model)
	Polarisation	Vertical
	Electrical downtilt *	0, 2 or 4 °
	Azimuth radiation pattern	Omnidirectional ±1.5dB
	Elevation beamwidth	4.5° ± 0.25 °
	Input Power	150 W at 60° C (Continuous rating)
	Intermodulation products	< - 153dBc for 2 x 20W carriers
	Dimensions	70 x 2465mm
	Weight	Antenna 18.7kg
		Mount 7kg

• Open boundary wideband quad ridge horns

• 2.4 GHz 3 dBi mobile antenna

• 5 GHz 5 dBi Omni in-building antenna

Introduction to Wireless Propagation

Propagation Mechanisms

- There are three major mechanisms in wireless propagation
- Reflection
 - Propagating wave impinges on an object which is large compared to its wavelength
 - e.g., the surface of the Earth, buildings, walls, etc.

Propagation Mechanisms (Cont.)

- Diffraction
 - Radio path between the transmitter and the receiver obstructed by a surface with sharp irregular edges
 - Waves bend around the obstacle, even when line-of-sight (LOS) propagation does not exist

Propagation Mechanisms (Cont.)

- Scattering
 - The radio wave impinges on a rough surface and the reflected energy is **spread out in all directions**
 - Objects smaller than the wavelength of the propagating wave
 (Objects larger than the wavelength may be modeled as reflection)
 - e.g., street tree, street signs, lamp posts, etc.

Prof. Tsai

Radio Propagation

• The propagation effects in **macrocellular** radio propagation can be classified into 3 terms:

- Large-scale fading

- Path loss:
 - Proportional to the propagation distance
- Shadowing: Slow fading
 - Depending on the local environment
- Small-scale fading
 - Fast multipath fading: Fast fading
 - Fast fluctuation of the received signal envelope
 - Received envelope can vary 30 dB to 40 dB
 - Causing time dispersion: need equalization in TDMA systems and RAKE reception in CDMA systems

Path Loss and Shadowing

Fast Multipath Fading

- Different signal components may be accumulated constructively or destructively
- The fast multipath fading effect is **frequency dependent**

Overall Propagation Effects

Path Loss & Shadowing

• In free space propagation, the received signal power is

$$\Omega(d) = P(\lambda_c/4\pi d)^2$$

$$\Omega_{\rm (dB)}(d) = 10\log_{10}\left(P/16\pi^2\right) + 20\log_{10}\lambda_c - 20\log_{10}d$$

- P: the transmitted power
- $-\lambda_c$: the wavelength

$$L_p(d) = P/\Omega(d)$$
$$= P_{(dB)} - \Omega_{(dB)}(d)$$

- *d*: propagation distance
- In mobile radio environments, path loss depends on:
 - Distance
 - Wavelength (frequency)
 - Antenna heights of MS and BS
 - Local terrain characteristics: buildings and hills

Prof. Tsai

83

Path Loss & Shadowing

- The simplest path loss model: Ω_(dB)(d) = Ω_(dB)(d₀) -10β log₁₀(d/d₀) + ε_(dB) dBm Tx power, antenna height, frequency, ...
 Path loss model is feasible only for the receivers in the far field
 How about the receivers in the near field?
 Ω_(dB)(d₀) : the received signal power (in dBm) at a known reference distance (in the far field of the signal transmission)
 d₀: 1 km for macrocells, 100 m for outdoor microcells, and 1 m for indoor picocells
 The path loss exponent β: 3 ~ 4 for urban macrocellular environments.
 - ε (dB): caused by **shadowing**; it's a zero-mean Gaussian random variable with $\sigma_{\Omega} = 8 \text{ dB} (5 \sim 12 \text{ dB}).$

Path Loss & Shadowing

Question

- For receivers in the far field, we have $d \gg d_0$
 - $\Omega(d)$ is surely smaller than the transmission power

$$\Omega_{(dB)}(d) = \Omega_{(dB)}(d_0) - 10\beta \log_{10}(d/d_0) + \varepsilon_{(dB)} dBm$$

- Question: How about the receivers in the near field?
 - For receivers in the near field, we have $d \ll d_0$
 - If $d \ll d_0$, $d/d_0 \ll 1$ and $\Omega(d) \gg \Omega(d_0)$
 - It is possible that $\Omega(d)$ is larger than the transmission power for a very small *d*. However, this is **impossible**!
 - The received power must be upper bounded by the transmission power
 - Another path loss model with a much smaller reference distance shall be used that makes the receivers in the far field of the new model

Question

• The path loss exponent for urban macrocellular environments is $\beta = 3 \sim 4$

• Question:

- Is the signal power decay in urban macrocellular environments faster or slower than that in the free space propagation?
- Is the path loss exponent in urban macrocellular environments favorable or unfavorable for cellular systems?
- The signal power decay is faster.
- It is favorable for some aspects, and is unfavorable for others
 - Favorable: system capacity, CCI (signal quality)
 - Unfavorable: power consumption, coverage

Prof. Tsai

87

System Performance

Interference and Noise

- Frequency reuse introduces two kinds of interference
 - Co-channel interference (Major)
 - Adjacent channel interference (Minor)
- Threshold effect: the link quality is acceptable if
 - Average received carrier-to-**noise** ratio $\Gamma > \Gamma_{th}$
 - Average received carrier-to-interference ratio $\Lambda > \Lambda_{th}$
- From system aspect, the probability of link failures is the major concern ⇒ Outage probability
 - For thermal noise (**TN**): $O = Pr(\Gamma < \Gamma_{th})$
 - For co-channel interference (CCI): $O = Pr(\Lambda < \Lambda_{th})$
- TN: Link budget (coverage limitation) – Required transmission power (sensitivity) $\Gamma < \Lambda$: only need to consider Γ
- CCI: Capacity (capacity limitation) – Frequency reuse factor $D/R = \sqrt{3N}$ $\Gamma > \Lambda$: only need to consider Λ

Prof. Tsai

89

Minimum Required Transmit Power (Cont.)

- Specify the outage probability of TN:
 - O(R): outage probability at cell edge
 - O: area **average** outage probability
- The outage probability for thermal noise on cell fringe:

$$\Gamma = \Omega / P^{Noise}; \mu_{\Gamma(dB)} = \mu_{\Omega(dB)} - P^{Noise}_{(dB)}; (i.e., \mu_{\Omega} / P^{Noise})$$

$$O(R) = \Pr(\Gamma(R) < \Gamma_{th})$$

$$= \int_{-\infty}^{\Gamma_{th(dB)}} \frac{1}{\sqrt{2\pi}\sigma_{\Omega}} \exp\left[-\frac{\left(x - \mu_{\Gamma}(R)\right)^{2}}{2\sigma_{\Omega}^{2}}\right] dx$$

$$= Q\left(\frac{\mu_{\Gamma}(R) - \Gamma_{th(dB)}}{\sigma_{\Omega}}\right)$$
of. Tsai
$$Q(R) = \frac{1}{\sqrt{2\pi}\sigma_{\Omega}} \exp\left[-\frac{\left(x - \mu_{\Gamma}(R)\right)^{2}}{2\sigma_{\Omega}^{2}}\right] dx$$

$$Q(R) = \frac{1}{\sqrt{2\pi}\sigma_{\Omega}} \exp\left[-\frac{\left(x - \mu_{\Gamma}(R)\right)^{2}}{2\sigma_{\Omega}^{2}}\right] dx$$

Prof. Tsai

Minimum Required Transmit Power (Cont.)

Assuming a uniform spatial density, the area averaged outage probability for thermal noise is

$$O = \frac{1}{\pi R^2} \int_0^R O(r) 2\pi r \, dr$$

= $Q(X) - \exp\left[XY + Y^2/2\right] Q(X+Y)$
 $X = \frac{\mu_{\Gamma(R)} - \Gamma_{th(dB)}}{\sigma_{\Omega}}, \quad Y = \frac{2\sigma_{\Omega}}{\beta\xi}$

- where $\xi = 10/\ln 10$

- Solve $M_{\Gamma}(R) = \mu_{\Gamma}(R) \Gamma_{th}$ (in dB) for a specified O(R) or O•
 - $-M_{\Gamma}(R)$ is the minimum carrier-to-noise ratio margin required on cell fringe

Minimum Required Transmit Power (Cont.)

- Determine Γ_{th}: It can be obtained from theory, experiments, or simulation, and depends on equipment (sensitivity)
 - Depending on the required SNR
- According to the desired service quality, we can derive the desired SNR mean value at cell edge $\mu_{\Gamma}(R)$
 - It depends on the outage performance: O(R) or O
- According to the system (path loss) model, we can derive the minimum required transmitted power
 - We should determine the path loss, antenna gains and received noise power

$$\mu_{\Gamma(dB)} = \mu_{\Omega(dB)} - P_{(dB)}^{Noise}$$
$$\mu_{\Omega(dB)}(d) = \Omega(d_0) - 10\beta \log_{10}(d/d_0)$$

Example

- Assume that the desired outage probability is O(R) = 0.01 and the desired SNR is $\Gamma_{th} = 7$ dB.
- $Q(2.3) \approx 0.01$ $\frac{\mu_{\Gamma(R)} - \Gamma_{th(dB)}}{\sigma_{\Omega}} = \frac{\mu_{\Gamma(R)} - 7}{8} = 2.3 \Rightarrow \mu_{\Gamma(R)} = 25.4 \text{ dB}$
- If the received noise power is $P_{(dB)}^{Noise} = -100$ dBW, the coverage shall be R = 10km and the path loss model for the transmission power **1W** is

$$\mu_{\Omega}(d) = -50 - 10 \times 4 \times \log_{10}(d/1\text{km})$$

• $\mu_{\Omega}(R) = P_{(dB)} - 50 - 40 \times \log_{10}(10) = -100 + 25.4$ $\Rightarrow P = 15.4 \text{ dBW} \approx 35 \text{W}$ $\mu_{\Omega(dB)} = \mu_{\Gamma(dB)} + P_{(dB)}^{Noise}$

Prof. Tsai

95

Co-channel Reuse Distance

• For co-channel interference (CCI): $O = Pr(\Lambda < \Lambda_{th})$

Co-channel Reuse Distance

- The desired signal and co-channel signals are characterized by **independent** log-normal shadowing fading
- Assume that each BS transmits the same average power
- The average forward link carrier-to-interference ratio is

$$\Lambda_{(dB)}(d) = \Omega_{(dB)}(d) - 10\log_{10}\left[\sum_{k=1}^{N_{I}} 10^{\Omega_{(dB)}(d_{k})/10}\right]$$

- The total interference power should be summed in linear scale
- The probability of CCI:

$$O(d) = \Pr(\Lambda_{(dB)}(d) < \Lambda_{th(dB)})$$

• The co-channel interference may not be the same on the forward and reverse channels

 \Rightarrow link imbalance

Prof. Tsai

97

Co-channel Reuse Distance

• Forward channel:

Co-channel Reuse Distance

• Reverse channel:

Spectral Efficiency (AWGN Channel)

- Consider a continuous-time AWGN channel with bandwidth W Hz, power constraint P watts, and additive white Gaussian noise with power spectral density $N_0/2$.
- The capacity of the AWGN channel is

$$C_{AWGN}(P,W) = \log\left(1 + \frac{P}{N_0W}\right) = \log(1 + SNR) \text{ bits/s/Hz}$$

- where $SNR = P/(N_0W)$
This formula measures
the **maximum achievable**
spectral efficiency through an AWGN channel as a
function of the SNR

Spectral Efficiency (Fading Channel)

- Consider a flat fading channel with the distribution of the received SNR $p(\gamma)$ known to the transmitter and receiver
- The capacity of the fading channel is

$$C_{\text{Fading}} = \int_0^\infty \log(1+\gamma) p(\gamma) \, d\gamma \le \log(1+\overline{\gamma}) \quad \text{bits/s/Hz}$$

- Averaged over multiple fading intervals
- The duration of a coding block must be much larger than several fading intervals

Prof. Tsai

Spectral Efficiency (Circuit/Packet Switching)

- There are a variety of definitions for **spectral efficiency**, but an appropriate definition measures spectral efficiency in terms of the **spatial traffic density per unit bandwidth**.
- The definition of spectral efficiency depends on the carried traffic types:
 - Circuit Switching (Telecommunications): a dedicated channel (circuit) through the network is allocated to each communication link between two nodes
 - The **number of simultaneous links** supported in the system is the key metric
 - Packet Switching (Data communications): multiple communication links share a common channel pool
 - The **total data rate** that can be supported on average in the entire system is the key metric

101

Spectral Efficiency (Circuit Switching)

• For a circuit-switching cellular system (a common data rate per link is assumed), the spectral efficiency η_s can be expressed as

$$\eta_s = \frac{N_c \times G_c}{W_{sys} \times A}$$
 Erlangs/m²/Hz

- G_c : offered traffic per channel (Erlangs/channel)
- N_c : number of channels per cell
- W_{svs} : total system bandwidth (Hz)
- -A: coverage area per cell (m²)
- If the cellular deployment consists of *N*-cell reuse clusters

$$N_c = \frac{W_{sys}}{W_c \times N}$$

 $-W_c$ is the bandwidth per channel

Prof. Tsai

103

Spectral Efficiency (Circuit Switching) (Cont.)

- Erlang is a unit of traffic measurement in telecommunications systems
 - One hour of call traffic during one hour of operation in a telephone system
 - 0.5 Erlang \Rightarrow 0.5 hour of call traffic during one hour of operation
- Assume that
 - $-\lambda = 600$ calls/hour
 - $-\mu = 3$ minutes
- The total offered traffic

$$\rho = \lambda \mu = \frac{600 \times 3}{60} = 30$$
 Erlangs

Spectral Efficiency (Circuit Switching) (Cont.)

• Spectral efficiency can be written as the product of

$$\eta_s = \frac{1}{W_c} \times \frac{1}{N \times A} \times G_c$$

$$= \eta_B \times \eta_C \times \eta_T$$

- η_B : bandwidth efficiency
 - Low bit rate **source coding** (audio or video only)
 - Bandwidth efficient modulation
- η_C : spatial efficiency
 - Minimize the area per cell
 - Minimize the co-channel reuse distance
 - Error control coding, antenna diversity, adaptive equalization, interleaving, sectorization, power control, ...

Prof. Tsai

Spectral Efficiency (Circuit Switching) (Cont.)

- η_T : trunking efficiency
 - Depend on channel assignment scheme
 - A Trade-off between QoS
 - Based on Erlang B formula

m servers

Incoming users

Blocking Prob.
$$B(\rho, m) = \frac{\rho^m}{m! \sum_{k=0}^m \frac{\rho^k}{k!}}$$

- *m*: the total number of channels in the trunk
- $\rho = \lambda \mu$: the total offered traffic
 - $-\lambda$: the call arrival rate (Poisson call arrivals)
 - $-\mu$: the mean call duration (exponentially distributed)
- $G_c = \rho/m$: offered traffic per channel

105

Spectral Efficiency (Circuit Switching) (Cont.)

Erlang B Table

							A, erlangs	
							В	-
т	1.0%	1.2%	1.5%	2%	3%	5%	7%	10%
1	.0101	.0121	.0152	.0204	.0309	.0526	.0753	.111
2	.153	.168	.190	.223	.282	.381	.470	.595
3	.455	.489	.535	.602	.715	.899	1.06	1.27
4	.869	.922	.992	1.09	1.26	1.52	1.75	2.05
5	1.36	1.43	1.52	1.66	1.88	2.22	2.50	2.88
6	1.91	2.00	2.11	2.28	2.54	2.96	3.30	3.76
7	2.50	2.60	2.74	2.94	3.25	3.74	4.14	4.67
8	3.13	3.25	3.40	3.63	3.99	4.54	5.00	5.60
9	3.78	3.92	4.09	4.34	4.75	5.37	5.88	6.55
10	4.46	4.61	4.81	5.08	5.53	6.22	6.78	7.51
					ρ			
11	5.16	5.32	5.54	5.84	6.33	7.08	7.69	8.49
12	5.88	6.05	6.29	6.61	7.14	7.95	8.61	9.47
13	6.61	6.80	7.05	7.40	7.97	8.83	9.54	10.5
14	7.35	7.56	7.82	8.20	8.80	9.73	10.5	11.5
15	8.11	8.33	8.61	9.01	9.65	10.6	11.4	12.5
16	8.88	9.11	9.41	9.83	10.5	11.5	12.4	13.5
17	9.65	9.89	10.2	10.7	11.4	12.5	13.4	14.5
18	10.4	10.7	11.0	11.5	12.2	13.4	14.3	15.5
19	11.2	11.5	11.8	12.3	13.1	14.3	15.3	16.6
20	12.0	12.3	12.7	13.2	14.0	15.2	16.3	17.6

	26	17.0	17.3	17.8	18.4	19.4	20.9	22.2	23.9					
	27	17.8	18.2	18.6	19.3	20.3	21.9	23.2	24.9					
	28	18.6	19.0	19.5	20.2	21.2	22.9	24.2	26.0					
	29	19.5	19.9	20.4	21.0	22.1	23.8	25.2	27.1					
	30	20.3	20.7	21.2	21.9	23.1	24.8	26.2	28.1					
	91	91.9	21.6	22 1	22.8	24.0	25.8	27.2	29.2					
	31	21.2	21.0	22.1	23.7	24.9	26.7	28.2	30.2					
	32	22.0	22.0	23.0	24.6	25.8	27.7	29.3	31.3					
	33	22.9	20.0	20.0	25.5	26.8	28.7	30.3	32.4					
	34 35	23.8 24.6	25.1	24.0 25.6	26.4	27.7	29.7	31.3	33.4					
		05.5	96.0	96.5	97 3	28.6	30 7	32.3	34.5					
	36	25.5	26.0	20.5	21.0	20.0	31.6	33.3	35.6					
	37	26.4	26.8	21.4	20.0	30.5	32.6	34.4	36.6					
(38	27.3	21.1	20.3	29.2	31.5	33.6	35.4	37.7					
	39 40	28.1 29.0	28.6 29.5	29.2 30.1	31.0	32.4	34.6	36.4	38.8					
						00.4	95.6	97 4	30.0					
	41	29.9	30.4	31.0	31.9	33.4	30.0 26.6	37.4 29.4	40.9					
	42	30.8	31.3	31.9	32.8	34.3	30.0 97.6	20.4	42.0					
	43	31.7	32.2	32.8	33.8	35.3	31.0	39.5	42.0					
	44	32.5	33.1	33.7	34.7	36.2	30.0	40.5	44.9					
	45	33.4	34.0	34.6	35.6	37.2	39.0	41.0	44.2					
	46	34.3	34.9	35.6	36.5	38.1	40.5	42.6	45.2					
	47	35.2	35.8	36.5	37.5	39.1	41.5	43.6	46.3					
	48	36.1	36.7	37.4	38.4	40.0	42.5	44.6	47.4					
	19	37.0	37.6	38.3	39.3	41.0	43.5	45.7	48.5					
(50	37.9	38.5	39.2	40.3	41.9	44.5	46.7	49.6					

Spectral Efficiency (Packet Switching)

- Considering system performance for **data transmission**, not only the **peak data rates** provided to the end-users are of importance, but also the **total data rate** that can be provided on average from the entire system.
- Spectral efficiency depends on several factors:
 - Bandwidth efficiency
 - Transmission technologies (narrowband, CDMA, OFDM, ...)
 - Digital modulation schemes (FSK, PSK, QAM, ...)
 - Spatial efficiency
 - Area per cell (Density of base stations)
 - Co-channel reuse distance (Frequency reuse factor)
 - Spatial reuse (Spatial multiplexing)
 - Successful decoding probability (Outage probability)

Spectral Efficiency (Packet Switching) (Cont.)

- ITU-R defines two requirements related to the efficiency of the radio interface for performance evaluation
 - Cell spectral efficiency: defining the operator perspective
 - Cell-edge spectral efficiency: defining the end-user perspective
- Cell spectral efficiency: The aggregated throughput over all users, averaged over all cells and divided by channel bandwidth
 - A measure of the maximum total "capacity" available in the system to be shared between users

$$\eta = \frac{\sum_{i=1}^{N} \chi_i}{T \times \omega \times M} \quad \text{bits/s/Hz/cell}$$

- where χ_i denotes the number of correctly received bits for user *i* in a system with *N* users and *M* cells, ω is the channel bandwidth, and *T* is the time over which the data bits are received

Prof. Tsai

111

Spectral Efficiency (Packet Switching) (Cont.)

- Cell-edge spectral efficiency: Based on the distribution of the normalized user throughput, which is defined as the average user throughput divided by the channel bandwidth
 - The 5% point of the cumulative distribution function (CDF) of the normalized user throughput (worst 5%).
 - A measure of the end-user perceived "quality of service" for the 5% of the users with the lowest user throughput.
- The normalized user throughput:

$$\gamma_i = \frac{\chi_i}{T_i \times \omega}$$
 bits/s/Hz

- T_i is the active time for user *i*.

Spectral Efficiency (Packet Switching) (Cont.)

• The requirements defined by **ITU-R** for peak spectral efficiency, cell spectral efficiency and cell-edge user spectral efficiency are listed in the tables.

Peak Spectral ITU Requir Efficiency (bit/s/ł		nent	LTE Fulfillment							
			Rele	ease 8	Release 10					
			FDD	TDD	FDD	TDD				
Downlink	15		15.3	15.0	30.6	30.0				
Uplink	6.75		4.2	4.0	16.8	16.0				
Test Environment and Corresponding Deployment		Cell S cell)	Spectral Efficie	ncy (bit/s/Hz/	Cell-Edge User Spectral Efficiency (bit/s/Hz)					
Scenario	Scenario		Downlink	Uplink	Downlink	Uplink				
Indoor (InH)			3	2.25	0.1	0.07				
Microcellular (UMi)			2.6	1.8	0.075	0.05				
Base coverage, urban (UMa)			2.2	1.4	0.06	0.03				
High speed (RMa)			1.1	0.7	0.4	0.015				
Prof. Tsai						113				

Spectral Efficiency (Packet Switching) (Cont.)

- How to achieve the demand of high spectral efficiency?
 - Spatial Multiplexing (MIMO)
 - The resources are **reused** in the same cell in the spatial domain

