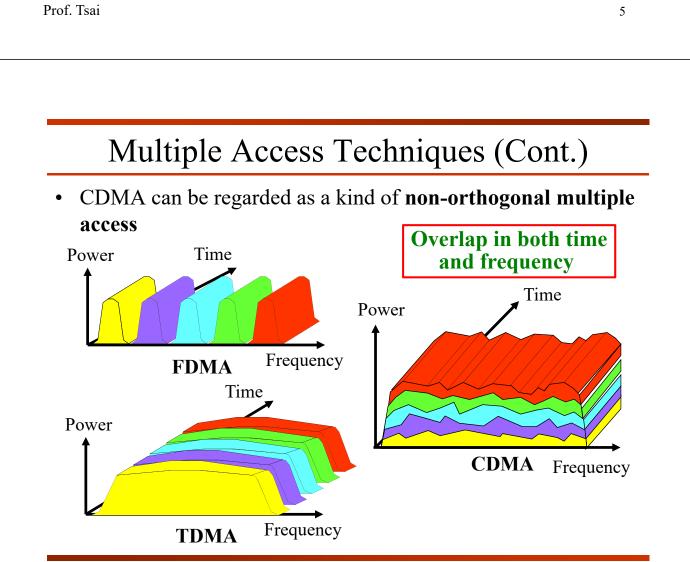
展頻通訊 (Spread Spectrum Communications)

國立清華大學電機系暨通訊工程研究所 蔡育仁 台達館 821 室 Tel: 62210 E-mail: yrtsai@ee.nthu.edu.tw

Prof. Tsai

CDMA (Code Division Multiple Access)

Contents

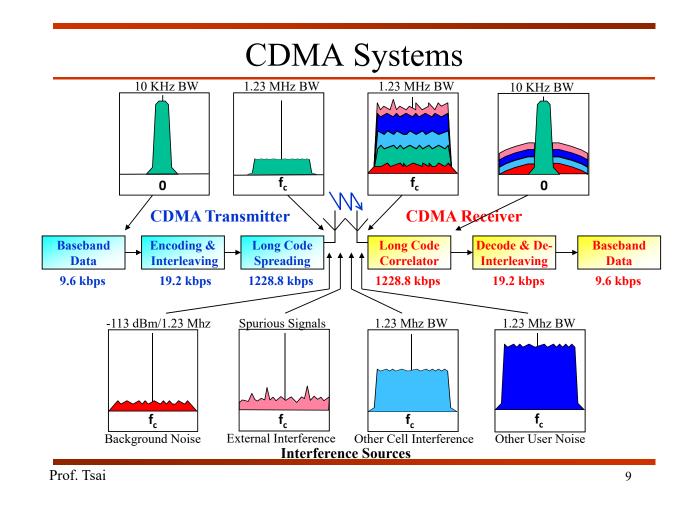

- CDMA systems
- Near/Far Problem
- Power Control
- System Capacity
- RAKE Receiver
- 3G CDMA Systems

Prof. Tsai

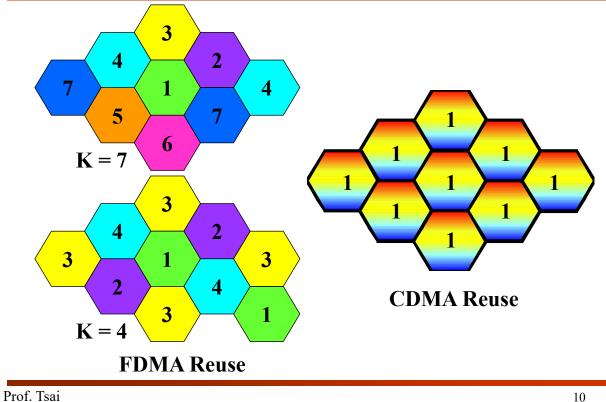
Concepts of CDMA

Multiple Access Techniques

- FDMA: Frequency Division Multiple Access
 - Divide a frequency band into multiple sub-bands
 - Generally, a guard band between two contiguous subbands is required
 - Generally, no self-interference is introduced
- TDMA: Time Division Multiple Access
 - Divide a time interval (frame) into multiple time-slots
 - A guard time between two contiguous time-slots is required
 - Generally, no self-interference is introduced
- CDMA: Code Division Multiple Access
 - Divide the spectral resource in the code domain
 - A set of low cross-correlation codes is needed
 - Self-interference is introduced among different signals


Code Division Multiple Access

- Code division multiple access (CDMA) is
 - A form of multiplexing and
 - A method of multiple access
- CDMA encodes data with a special code associated with each channel, and uses the constructive properties of the special codes to perform the multiplexing.
 - CDMA does not divide up the channel by time (TDMA) or frequency (FDMA)
 - Different channels are distinguished by different spreading codes (DSSS) or different hopping patterns (FHSS)


Prof. Tsai

Code Division Multiple Access (Cont.)

- The desired signal is firstly spread by the spreading code(s) and then transmitted over the wireless channel
- **Multiple access interference** (MAI) and the channel noise are added to the desired signal in the channel
- At the receiver, the code generator is synchronized with the desired signal
- Then the desired signal is despread to a narrow band signal by using the corresponding spreading code(s)

Cellular Frequency Reuse Patterns

Spreading Codes for CDMA

- How to discriminate different signals?
 - Discriminate different signals from the serving (same) cell
 - Discriminate the signals from different cells
- Some codes are available for CDMA systems:

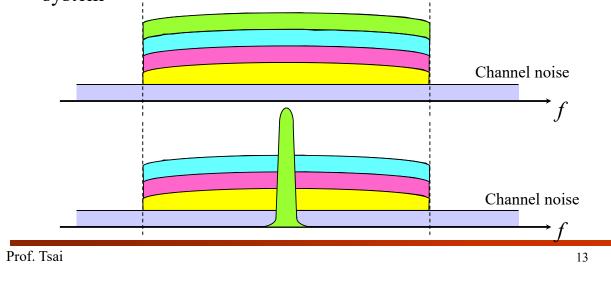
- Orthogonal codes:

- Excellent cross-correlation properties for different signals
- Sensitive to synchronization

- Quasi-orthogonal codes:

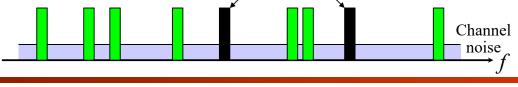
- Good or acceptable cross-correlation properties for different signals
- Not sensitive to synchronization

Prof. Tsai


11

Spreading Codes for CDMA (Cont.)

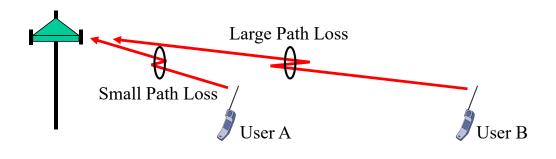
- For all **downlink** channels transmitted by the same BS:
 - Timing synchronization can be easily maintained
 - Orthogonal codes (such as Walsh codes) are used to discriminate different signals from the serving cell
 - Due to **multipath propagation**, the orthogonality is partly **destroyed** \Rightarrow MAI from the serving cell
- For all **uplink** channels:
 - Timing synchronization is **impossible**
 - Quasi-orthogonal codes are generally used to discriminate the signals from different users
- For signals from **different cells**:
 - Timing synchronization is impossible
 - Quasi-orthogonal codes are generally used


DSSS Multiple Access

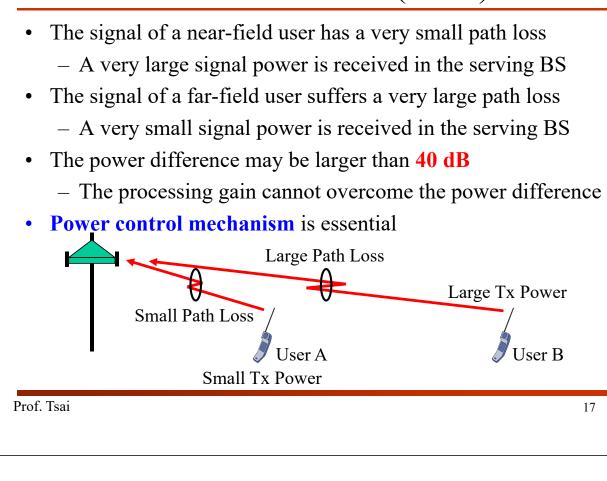
- For DSSS CDMA systems, different signals occupy the same frequency band.
- Increasing the number of simultaneous users will raise the MAI power spectrum density ⇒ An interference-limited system

FHSS Multiple Access

- For FHSS CDMA systems, a signal only occupies a narrow band channel at a time instant
 - If no collision occurs, there is no interference
 - If a collision occurs, a very strong interference is introduced
- Increasing the number of simultaneous users will raise the probability of collision ⇒ An interference-limited system
- If an effective **channel coding** scheme is applied to data transmission, the effect caused by collision could be eliminated
 - However, if the probability of collision is too high, data error is inevitable collision

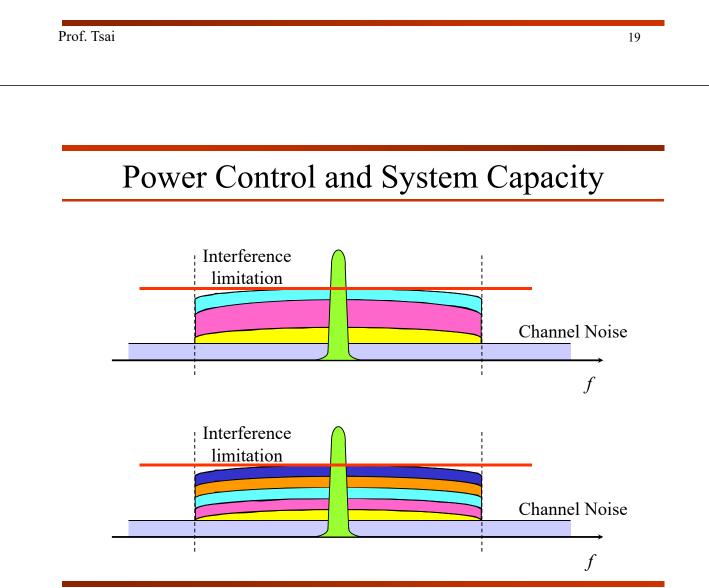


Near-Far Problem


Prof. Tsai

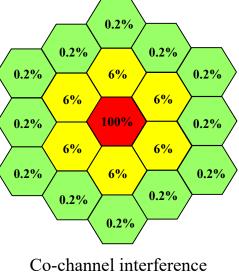
Near-Far Problem

- The existence of the **near-far problem** is mainly due to that different users share the same frequency band at the same time
- The desired signal power of a specific user is the **interference** to other co-channel users
- If both users have the same transmission power, the signal of user B will be strongly interfered by the signal of user A


Near-Far Problem (Cont.)

Power Control

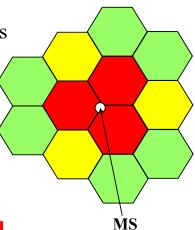
Power Control Mechanism


- Two issues are considered in the power control mechanism:
 - The received signal power
 - The received signal quality (carrier-to-interference power ratio (CIR) or the decoded output quality (frame error rate))
- Considering the received signal power: A user suffers from a large path loss should have a large transmission power
- Considering the received signal quality: A user suffers from a large interference power should have a large transmission power
- A good power control mechanism can improve the link quality and the system capacity

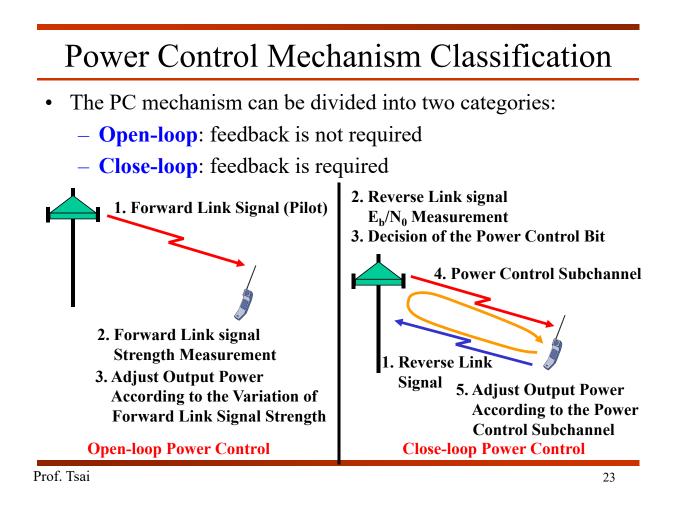
Power Control Mechanism – Up-link

• For **reverse-link/up-link** channels:

- All up-link channels have the same desired receiver (i.e., the serving BS)
- The major co-channel interference comes from all the MS in the same cell
- The goal is to control different channels in the same cell having the same received signal power at the serving BS
 - Prevent the near-far problem


Co-channel interference for up-link channels

21

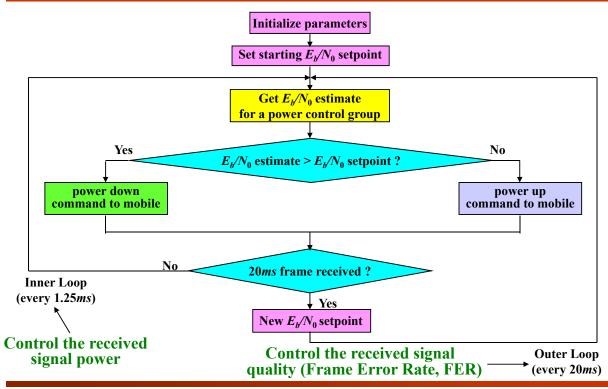

Prof. Tsai

Power Control Mechanism – Down-link

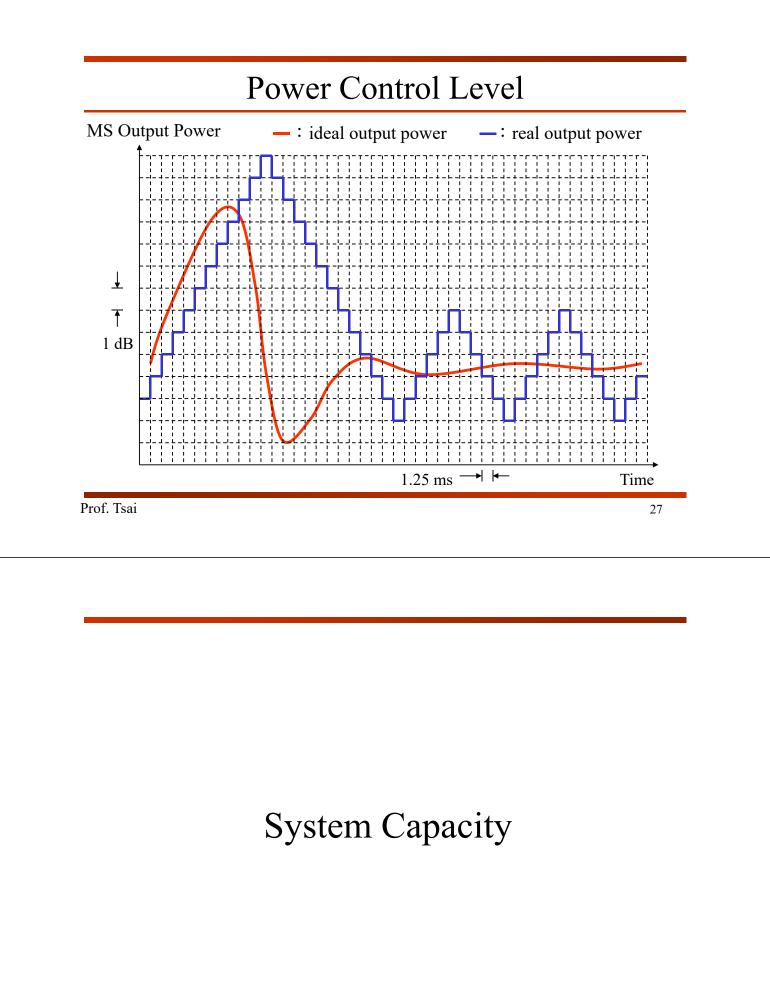
- For forward-link/down-link channels:
 - Different down-link channels have different receivers at different locations
 - Due to the employing of orthogonal codes in a cell, the major co-channel interference comes from the serving cell and all neighboring BSs
 - Depends on the propagation environment and the location
 - The goal is to control that the received CIR at the desired level
 - The allocated transmission power depends on the **interference level**

Co-channel interference for down-link channels

Power Control Mechanism – Open-loop


- Open-loop power control:
 - Usually applied in the **up-link** channels
 - According to the variation of the received pilot signal power
 - Executed solely by the MS
 - Adjust the average transmission power to compensate the variation due to large-scale fading (path loss & shadowing)
 - Provide a slow power control mechanism with a very large dynamic range per step
- When the received **pilot signal** power increases (or decreases)
 - \Rightarrow The propagation loss is decreasing (or increasing)
 - ⇒ The MS should decreases (or increases) the transmission power

Power Control Mechanism – Close-loop

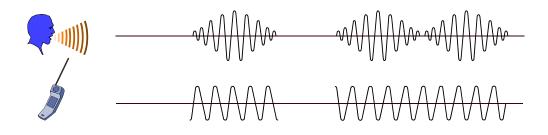

- Close-loop power control:
 - Executed by the MS in collaboration with the serving BS
 - Adjust the average transmission power to compensate the variation due to small-scale fading (fast fading)
 - Provide a fast power control mechanism with a small dynamic range per step
- The serving BS receive the signal power from an MS
- When the **received signal power** (or CIR) is below (above) a specific threshold
 - ⇒ The BS sends a power control message which directs the MS to increase (or to decrease) the transmission power
- The MS executes the power control command

Reverse Link Close Loop Power Control

Prof. Tsai

Capacity of CDMA Systems – Up-link

- Assuming **perfect up-link** power control
 - -d is the required E_b/N_t
 - -g is the processing gain
 - -S is the received signal strength
 - -F is the base station noise figure
 - $-N_0$ is the spectral density of thermal noise
 - -W is the system bandwidth The factor corresponds to
 - $-\alpha$ is the voice activity factor the interference coming from
 - β is the interference factor **all neighboring cells**
 - -N is the average number of users in a cell

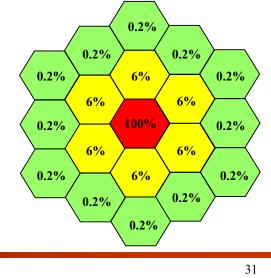

$$d = \frac{gS}{\frac{FN_0W + \alpha(1+\beta)(N-1)S}{\text{Co-channel Interference}}}$$

Prof. Tsai

Voice Activity Factor and CDMA Capacity

- α : the voice activity factor
 - If the voice does not activate, there is no need to transmit the radio signal
 - For a two-way conversation, the voice activity factor is about $35\% \sim 40\%$
- The average interfering users in a cell is

 $\alpha(N-1)$


Capacity of CDMA Systems – Up-link (Cont.)

- β : the interference factor
 - α (N-1) S is the co-channel interference (CCI) coming from the serving cell
 - The normalized co-channel interference coming from all neighboring cells is

$$\beta = 6 \times 6\% + 12 \times 0.2\% + \cdots$$
$$\approx 40\%$$

– The total CCI is

$$\alpha(1+\beta)(N-1)S$$

Prof. Tsai

Capacity of CDMA Systems – Up-link (Cont.)

• Solve N to obtain the average system capacity

$$N = \frac{g}{\alpha d(1+\beta)} + 1 - \frac{FN_0W}{\alpha(1+\beta)S}$$

The pole point is obtained by letting the signal-to-noise ratio go to infinity (i.e., S→∞)

$$N_{\max} = \frac{g}{\alpha d(1+\beta)} + 1$$

- The **pole capacity** is the maximum system capacity in a cell
 - Is achievable only in theory
 - The number of users that can be put on an actual system is typically smaller than the pole capacity
 - Typically **50% to 60%**

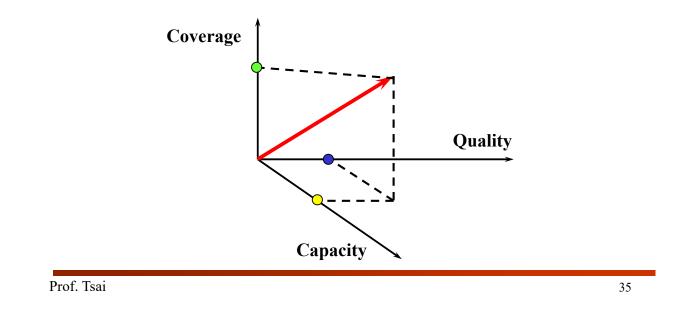
Example: Capacity of cdma2000 Systems

• For cdma2000 systems up-link

Parameter	8 kb vocoder	13 kb vocoder
W	1.23 MHz	1.23 MHz
R	9.6 kbps	14.4 kbps
G = W / R	128	85
α	0.4	0.4
β (for 3 sector)	0.85	0.85
D	5.01 (7 dB)	5.01 (7 dB)
N _{max}	35	24
Capacity Loading	57%	57%
No. of CEs per Sector	20	13
Offered Erlangs at 2% Blocking	13.2	7.4

Prof. Tsai

33


Capacity of CDMA Systems – Down-link

- For **down-link**, the system capacity is hard to determinate and strongly depends on
 - The distribution of mobile users
 - The available transmission power
 - The available code channels

Capacity, Quality and Coverage of CDMA

• For CDMA systems, the **system capacity**, the **signal quality** and the **cell coverage** are strongly correlated

- Radio resource (bandwidth and power) is fixed

Capacity Limitation of CDMA

- The capacity limitation for CDMA systems is due to many different reasons (Bandwidth is assumed to be fixed)
- In **down-Link**, all channels are coming from the same transmitter
 - **Power resource** limitation (available power is limited)
 - Code resource limitation (available orthogonal codes are limited)
- In **up-Link**, different channels are coming from different terminals
 - Co-channel interference is the major limitation (an acceptable CIR is desired)
- **Hardware** limitation: the number of channel elements (CE) is the nature limitation of the system capacity

RAKE Receiver

Prof. Tsai

Diversity Techniques

- There are many diversity techniques have been applied in wireless communications, including
 - Space diversity
 - Angle diversity
 - Polarization diversity
 - Frequency diversity
 - Time diversity
 - Multipath diversity
- Multipath diversity:
 - No extra antennas and/or frequency resource are required
 - Resolve multipath components at different delays
 - Use DSSS signaling along with a RAKE receiver

Multipath Signals

- For narrow-band systems, **channel equalization** is generally used to eliminate the **inter-symbol interference** (ISI)
- Due to the wideband nature of CDMA systems, more paths (one in each chip) can be resolved, and the traditional equalization is no longer an option
- The receiver needs to **resolve** all the paths and then **combines** them
 - RAKE receiver combines the signals from all paths to produce one clear signal
 - Individual paths are found (synchronized to) by crosscorrelating a reference pattern with the received signal

Prof. Tsai

39

RAKE Receiver

- Suppose that desired signal is transmitted over a multipath channel
 - The received signal is

$$S_r(t) = \sum_i A_i S(t - \tau_i) \exp(j\phi_i)$$

- $-A_i$ is the **channel gain** corresponds to the *i*-th path
- $-\tau_i$ is the **time delay** corresponds to the *i*-th path
- After passing through the filter matched to the signal S(t)
 - The resultant signal at the filter output is

$$S_{rf}(t) = \sum_{i} A_{i} R(t - \tau_{i} - T) \exp(j\phi_{i})$$

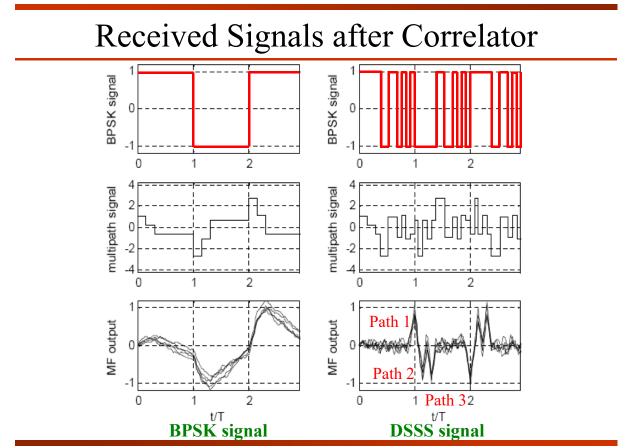
- $R(\tau)$ is the **auto-correlation function** of the transmitted signal

RAKE Receiver (Cont.)

- In a RAKE receiver, one **RAKE finger** is assigned to each multipath
 - Maximizing the amount of received signal energy
 - The number of fingers is limited
- Each of these different paths are combined to form a composite signal that is expected to have substantially better characteristics than a single path
- For **maximum ratio combining (MRC)**, the RAKE receiver needs the knowledge of channel parameters
 - Number of paths
 - Path delays
 - Channel gains (complex-valued)

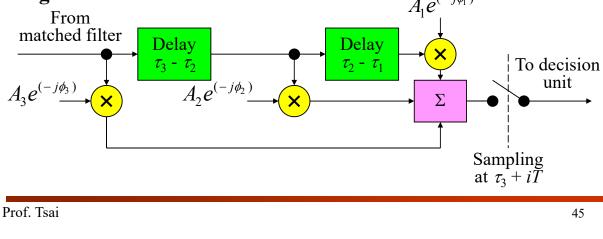
Prof. Tsai

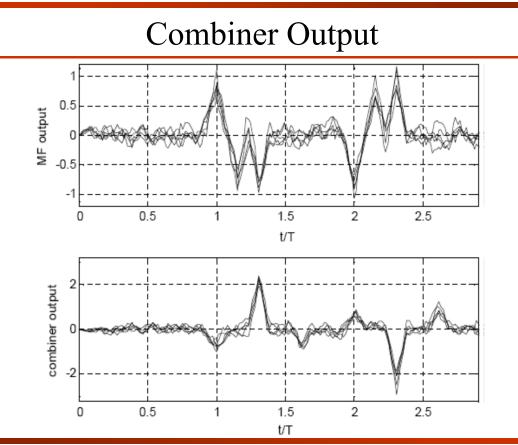
41

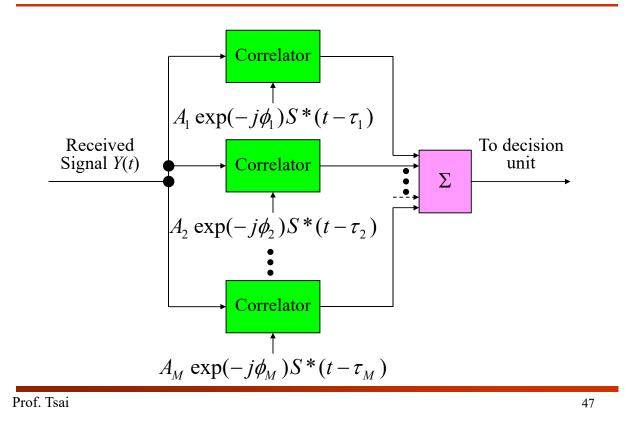

CDMA Receiver (Cont.)

- In a CDMA receiver the following steps take place
 - Two-level spreading: Long code (user) and Short code (BS)
- **Descrambling**: Received signals are multiplied by the scrambling code and delayed versions of the scrambling code
 - The delays are determined by a path searcher prior to descrambling
- **Despreading**: The descrambled data of each path are despread by simply multiplying the descrambled data by the spreading code
- Integration and dump: The despread data is then integrated over one symbol period
 - Give one complex sample output per QPSK symbol
 - This process is carried out for all the paths

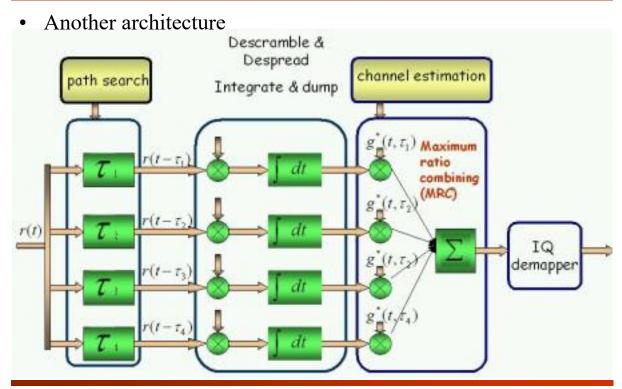
CDMA Receiver (Cont.)


- **Combining**: The same symbols obtained via different paths are then combined together
 - Apply the corresponding channel information
 - Use a combining scheme like maximum ratio combing (MRC)
- **Decision**: The combined outputs are then sent to a decision device
 - To decide on the transmitted bits
- The **path searcher** identifies the location (in chips), i.e., the path delay, for each independent strong path that are present in the received signal
 - This is done mainly by correlating the received **pilot signal** (with its unique scrambling code) with the stored scrambling code


Prof. Tsai


Maximum Ratio Combining

- Path synchronization:
 - All paths are synchronized to the last arriving path
 - The first path is delayed by τ_3 τ_1
 - The second path is delayed by τ_3 τ_2
- Each path is weighted by the corresponding estimated **channel** gain $A_1 e^{(-j\phi_1)}$



Correlator-based RAKE Receiver

RAKE Receiver (Cont.)

Prof. Tsai

3G CDMA Systems

Prof. Tsai

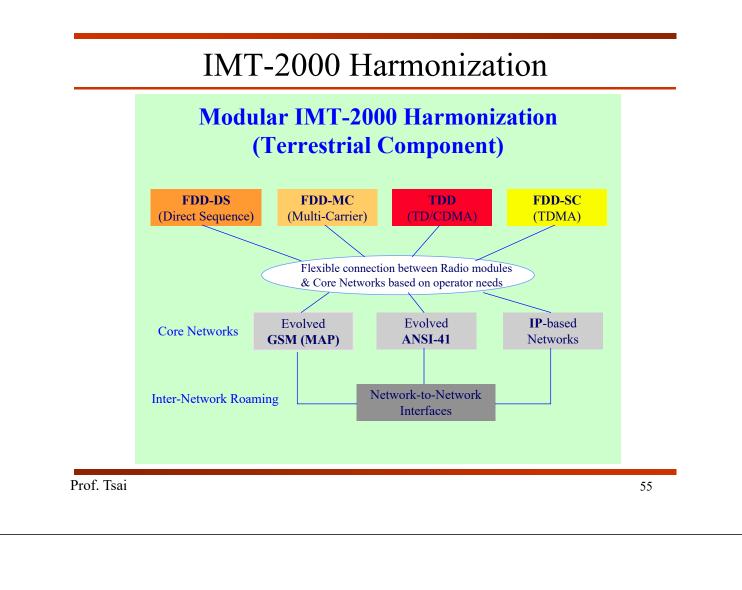
Second Generation CDMA System

- The first digital cellular system based on CDMA was standardized as Interim Standard 95 (IS-95)
 - By US Telecommunication Industry Association (TIA) (1993)
 - This is one of the **2G** mobile cellular systems
- The International Telecommunication Union (ITU) formulated a plan to implement a global frequency band in the 2GHz band
 - Support the worldwide wireless communication standard called International Mobile Telecommunication 2000 (IMT-2000)
 - The **3G** mobile cellular systems
 - Originally planned to provide service in year 2000

IS-95 System Parameters (I)			
Parameter	Downlink	Uplink	
Frequency band	869–894 MHz	824–849 MHz	
Carrier spacing	1.25 MHz	1.25 MHz	
Chip rate	1.2288 Mchips/s	1.2288 Mchips/s	
Speech coder	CELP 8kbps 13 kbps	CELP 8kbps 13 kbps	
	EVRC 8kbps	EVRC 8kbps	
Data rates	9.6 kbps set, 14.4 kbps set	9.6 kbps set, 14.4 kbps set	
Power control	Slow power control	800 Hz	
frequency	(Frame based)	(800 bps)	
Scrambling	QPSK spreading	QPSK spreading	
	(Short code, period = 2^{15})	(Short code, period = 2^{15})	
	Orthogonal spreading		
	(64 Hadamard codes)		
Prof Tsai		51	

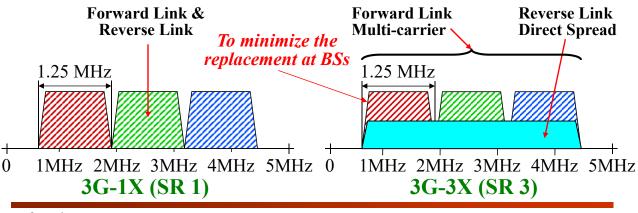
Prof. Tsai

51


IS-95 System Parameters (II)

Parameter	Downlink	Uplink
DS spreading	Binary spreading	Binary spreading
	Long code, period = $2^{42} - 1$	Long code, period = $2^{42} - 1$
FEC code	Convolutional code,	Convolutional code,
	(Rate 1/2,	(Rate 1/2 or 1/3,
	constraint lenth $= 9$)	constraint lenth $= 9$)
		Orthogonal modulation
Frame duration	20 ms	20 ms
Interleaving	Block interleaver,	Block interleaver,
	duration $= 20 \text{ ms}$	duration $= 20 \text{ ms}$
Receiver	Coherent demodulation	Noncoherent demodulation
	(Pilot signal)	Rake receiver
	Rake receiver	

Third Generation CDMA Systems

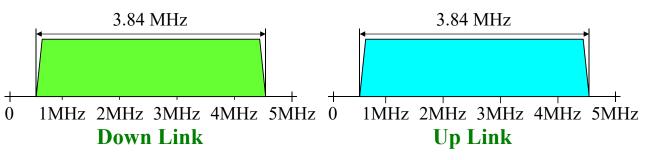

- ITU determined new spectrum bands to accommodate the 3G mobile cellular systems
 - 806–960 MHz, 1710–1885 MHz, and 2500–2690 MHz
- Initially, ITU planned to harmonize a **single** wireless communication standard, but it splits into two communities
 - 3GPP (3G Partnership Project): it proposes the WCDMA (Wideband CDMA) standard based on the network fundamentals of GSM
 - 3GPP2: it proposes the cdma2000 standard evolved from the IS-95 standard
 - Both base on the **CDMA** transmission technology

Prof. Tsai

cdma2000 Carriers

- To provide high-rate transmission and backward compatibility with IS-95, cdma2000 supports SR (Spreading Rate) 1 and SR 3 modes
 - SR 1: the conventional IS-95 system (bandwidth 1.25 MHz)
 - SR 3: the MC (Multi-Carrier) mode with three times bandwidth (claimed to be 5 MHz)

Prof. Tsai


cdma2000 System Key Parameters

- The chip rate of cdma2000 systems is
 - SR 1: FL/RL 1.2288 Mcps
 - SR 3: FL 1.2288 Mcps ×3; RL 3.6864 Mchips/s
- Support of IMT-2000 data rates:
 - Vehicular 144 kbps (supported by 1X systems)
 - Pedestrian 384 kbps (supported by 3X systems)
 - Indoor **2 Mbps** (supported by 3X systems)
- The processing gain is
 - 144 kbps: 8
 - 384 kbps: 8 (supported by 3X systems)
 - 2 Mbps: 4 (supported by 3X systems with 2 code channels)

Prof. Tsai

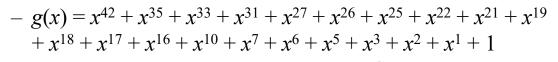
W-CDMA Carrier

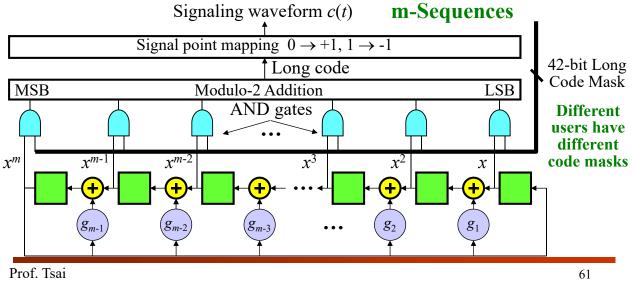
- WCDMA is a new system without the issue of backward compatibility
- Only DS (Direct Spreading) mode is supported
 - It is not MC (Multi-Carrier) mode
 - It supports only one spreading rate 3.84 Mchips/s (with the bandwidth claimed to be 5 MHz)

WCDMA System Key Parameters

- The chip rate of WCDMA systems is
 - FL/RL **3.84 Mchips/s**
- Support of IMT-2000 data rates:
 - Vehicular 144 kbps (supported by 1X systems)
 - Pedestrian 384 kbps (supported by 3X systems)
 - Indoor 2 Mbps (supported by 3X systems)
- The processing gain is
 - 144 kbps: 26
 - 384 kbps: 10
 - 2 Mbps: 4 (supported by 2 code channels)

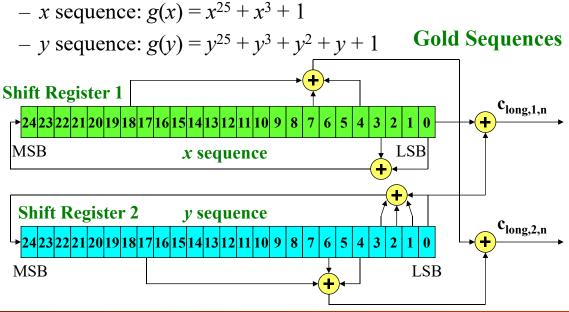
Prof. Tsai


59

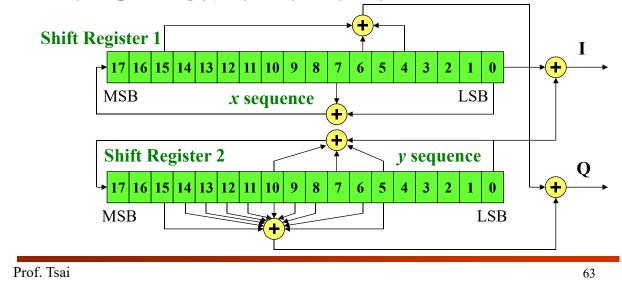

cdma2000 vs WCDMA

- Chip rate:
 - cdma2000: 1.2288/3.6864 Mcps
 - W-CDMA: 3.84 Mcps
- Pilot:
 - cdma2000: A BS transmits a common pilot for all users
 - W-CDMA: A BS transmits individual pilot to each user
- Synchronization:
 - cdma2000: BSs must be synchronous (GPS receiver is required)
 - W-CDMA: BSs do not need to be synchronous (Asynchronous)

cdma 2000 Long Code Generator


The generating polynomial for the long code sequence used in cdma 2000 systems is

WCDMA Uplink Long Scrambling Sequence


In the uplink of WCDMA systems, two long scrambling sequences $c_{long,1,n}$ and $c_{long,2,n}$ are constructed

- x sequence: $g(x) = x^{25} + x^3 + 1$

WCDMA Downlink Long Scrambling Sequence

- In the downlink of WCDMA systems, two long scrambling sequences $c_{long,1,n}$ and $c_{long,2,n}$ are constructed
 - x sequence: $g(x) = x^{18} + x^7 + 1$
 - y sequence: $g(y) = y^{18} + y^{10} + y^7 + y^5 + 1$ Gold Sequences

