展頻通訊 (Spread Spectrum Communications)

國立清華大學電機系暨通訊工程研究所 蔡育仁 台達館 821 室 Tel: 62210 E-mail: yrtsai@ee.nthu.edu.tw

Prof. Tsai

Chapter 4 Code Tracking Loops

Contents

- Introduction
- Optimum Tracking of Wideband Signals
- Baseband Delay-Lock Tracking Loop
- Noncoherent Delay-Lock Tracking Loop
- Tau-Dither Noncoherent Tracking Loop
- Double-Dither Noncoherent Tracking Loop
- Code Tracking Loops for FH Systems

Prof. Tsai

Introduction

- There are two components in the synchronization problem:
 - Code acquisition: determination of the initial code phase
 - **Code tracking**: **maintaining** of code synchronization after initial acquisition
- Code acquisition: acquire the code phase of the spreading code in **chip level** (from the perspective of DSSS)
- Code tracking: track the spreading code to **minimize** the timing error

Acquisition \rightarrow Tracking & Demodulation \rightarrow Lose Tracking \rightarrow Acquisition \rightarrow Tracking & Demodulation \rightarrow ...

Introduction (Cont.)

- Code tracking is accomplished using **phase-locked** techniques very similar to **carrier tracking**
 - The principal difference is the phase discriminator
 - For carrier tracking: a multiplier
 - For code tracking: several **multipliers** and pairs of **filters** and **envelope detectors**
- The phase discriminators make use of **correlation operations**
 - Two different phases (early and late) of receivergenerated spreading waveform are used

Prof. Tsai

Introduction (Cont.)

- These correlation operations can be accomplished using:
 - Two independent correlators: delay-lock tracking loop (DLL)
 - A single correlator (time shared): tau-dither tracking loop (TDL)
- The transmission delay is usually a function of time, $T_d(t)$
 - Mainly due to user mobility
- The code tracking loops are designed to achieve low root mean square (rms) **tracking jitter** in the present of AWGN

- In order to achieve a good tracking performance of $T_d(t)$

- The loop bandwidth is selected to be a compromise
 - Wide bandwidth: facilitate tracking the dynamics of $T_d(t)$
 - Narrow bandwidth: minimize the tracking jitter due to interference

Optimum Tracking of Wideband Signals

Prof. Tsai

Optimum Tracking of Wideband Signals (Cont.)

- This discriminator is optimum
 - Its output is a maximum likelihood estimate of the phase difference between the two wideband signals in an AWGN environment
- The received signal

$$r(t) = s(t - T_d) + n(t)$$

is multiplied by a **differentiated and delayed** replica $s'(t - \hat{T}_d)$

- The output contains a **DC component** related to the delay error, i.e., $(T_d \hat{T}_d)$
- This **DC component** is extracted by the **low-pass filter** and used to correct the delay of the voltage controllable delay line

Prof. Tsai

Optimum Tracking of Wideband Signals (Cont.)

- Suppose that the received signal is the baseband spreading waveform $c(t T_d)$ and thermal noise is ignored
- The received signal $c(t-T_d)$ and the delayed replica $c(t-\hat{T}_d)$

Optimum Tracking of Wideband Signals (Cont.)

- For an m-sequence with period N and chip duration T_c , the number of **transitions** of an *m*-sequence is
 - By **Property** V, the total number of runs of subsequence is

$$2 \times (2^{r-3} + 2^{r-2} + \dots + 2^{1} + 2^{0}) + 2 = 2 \times (2^{r-2} - 1) + 2 = 2^{r-2}$$

 \Rightarrow The number of transitions is $2^{r-1} = \frac{1}{2} (N+1)$

• If
$$\hat{T}_d > T_d$$
 and $\left| T_d - \hat{T}_d \right| < T_c$:

- The impulse functions at the multiplier output are all **positive**
- The **DC component** is the time average of

$$c(t-T_{d})\frac{d}{dt}\left[c(t-\hat{T}_{d})\right] = \frac{2 \times (N+1)/2}{NT_{c}} = \frac{N+1}{NT_{c}}$$

- The observation interval is NT_c and there are $\frac{1}{2}(N+1)$ transitions

Optimum Tracking of Wideband Signals (Cont.)

- If $\hat{T}_d < T_d$ and $\left|T_d \hat{T}_d\right| < T_c$, the impulse functions at the multiplier output are all **negative**
 - The **DC component** is

$$c(t-T_d)\frac{d}{dt}\left[c(t-\hat{T}_d)\right] = -\frac{N+1}{NT_c}$$

- If $|T_d \hat{T}_d| > T_c$, there is an **equal number** of positive and negative impulses
 - The number of transition is $\frac{1}{2}$ (*N*+1), and the impulses may be positive or negative (depending on the phase shift)
 - The **DC component** is

$$c(t-T_d)\frac{d}{dt}\left[c(t-\hat{T}_d)\right] = 0$$

Prof. Tsai

Optimum Tracking of Wideband Signals (Cont.)

• The DC output of the multiplier is a function of the normalized delay difference $\delta = (T_d - \hat{T}_d) / T_c$

$$E\left[c(t-T_{d})\frac{d}{dt}c(t-T_{d})\right]$$

$$\frac{N+1}{NT_{c}}$$

$$1.0$$

$$\delta = \frac{T_{d}-\hat{T}_{d}}{T_{c}}$$

$$-\frac{N+1}{NT_{c}}$$

Baseband Delay-Lock Tracking Loop

Prof. Tsai

Baseband Delay-Lock Tracking Loop

- The baseband DLL is to track the **time-varying** phase of the received spreading waveform $c(t T_d)$
- The received signal is

$$s_r(t) = \sqrt{P}c(t - T_d) + n(t)$$

- -P is the power of spreading waveform
- n(t) is AWGN with two-sided power spectral density $N_0/2$
- The received signal is input to the delay-lock discriminator, after power division, it is correlated with
 - An early spreading waveform $c(t \hat{T}_d + (\Delta/2)T_c)$
 - An late spreading waveform $c(t \hat{T}_d (\Delta/2)T_c)$
 - $-\Delta$ is the **time difference** between the early and late channels

Block Diagram of Baseband DLL

• The block diagram of the baseband delay-lock tracking loop is

Delay-Lock Discriminator Output

• The output of the early-correlator is:

$$y_1(t, T_d, \hat{T}_d) = K_1 \sqrt{\frac{P}{2}} c(t - T_d) c(t - \hat{T}_d + \frac{\Delta}{2} T_c)$$

• The output of the late-correlator is:

$$y_2(t, T_d, \hat{T}_d) = K_1 \sqrt{\frac{P}{2}} c(t - T_d) c(t - \hat{T}_d - \frac{\Delta}{2} T_c)$$

• The **difference** of $y_1(t)$ and $y_2(t)$ is:

$$\varepsilon(t,T_d,\hat{T}_d) = K_1 \sqrt{\frac{P}{2}} c(t-T_d) \left[c(t-\hat{T}_d - \frac{\Delta}{2}T_c) - c(t-\hat{T}_d + \frac{\Delta}{2}T_c) \right]$$

- The **DC component** is used for code tracking
- The time-varying component is called code shift-noise

Delay-Lock Discriminator Output (Cont.)

• The DC component is:

$$K_{1}\sqrt{\frac{P}{2}}D_{\Delta}(T_{d},\hat{T}_{d}) = \frac{1}{NT_{c}}\int_{-NT_{c}/2}^{NT_{c}/2}K_{1}\sqrt{\frac{P}{2}}c(t-T_{d})$$

$$\times \left[c(t-\hat{T}_{d}-\frac{\Delta}{2}T_{c})-c(t-\hat{T}_{d}+\frac{\Delta}{2}T_{c})\right]dt$$

$$R_{c}(\tau) = \frac{1}{T}\int_{0}^{T}c(t)c(t+\tau)dt$$

$$D_{\Delta}(T_{d},\hat{T}_{d}) = R_{c}(T_{d}-\hat{T}_{d}-\frac{\Delta}{2}T_{c})-R_{c}(T_{d}-\hat{T}_{d}+\frac{\Delta}{2}T_{c})$$

$$= R_{c}\left[(\delta-\frac{\Delta}{2})T_{c}\right]-R_{c}\left[(\delta+\frac{\Delta}{2})T_{c}\right]$$

$$\triangleq D_{\Delta}(\delta)$$

Prof. Tsai

Delay-Lock Discriminator Output (Cont.)

Delay-Lock Discriminator DC Output (Cont.)

Delay-Lock Discriminator DC Output (Cont.)

 Δ

Baseband Delay-Lock Tracking Loop (Cont.)

- There is a range of δ near zero for which $D_{\Delta}(\delta)$ is **linearly** related to δ
 - This range is selected as the normal operation region
 - The slop of the discriminator S-curve near $\delta = 0$ is
 - 2(1+1/N) for all Δ , $0 < \Delta < 2.0$
 - The linear range of δ is
 - $|\delta| < \Delta/2$ for $\Delta \le 1$
 - $|\delta| < 1 \Delta/2$ for $1 \le \Delta < 2$
- Near $\delta = 0$ ($\delta < \Delta/2$), the time difference of

$$-c(t-T_d) \& c(t-\hat{T}_d - \frac{\Delta}{2}T_c) \text{ is } (\frac{\Delta}{2} - \delta)T_c$$
$$-c(t-T_d) \& c(t-\hat{T}_d + \frac{\Delta}{2}T_c) \text{ is } (\delta + \frac{\Delta}{2})T_c$$

Prof. Tsai

Baseband Delay-Lock Tracking Loop (Cont.)

Baseband DLL with AWGN

• Generally, the time-varying component of $\varepsilon(t,T_d,\hat{T}_d)$

 $K_1 \sqrt{P/2} N_{\Delta}(t, T_d, \hat{T}_d)$

can be **ignored** (filtered out by the loop filter)

The self-noise power is at frequencies (high frequency) outside the bandwidth of the tracking loop (baseband)

Noncoherent Delay-Lock Tracking Loop

Prof. Tsai

Noncoherent Delay-Lock Tracking Loop

- Two difficulties arise when the **baseband DLL** is applied to **actual** spread-spectrum systems
 - Since the tracking loop input is the spreading waveform c(t):
 - c(t) must be recovered from the carrier prior to code tracking (received signal r(t) = d(t)×c(t))
 - \Rightarrow The received signal must be demodulated (to obtain the spreading waveform c(t)) prior to code tracking
 - A coherent **carrier reference** (for coherent demodulation) must be generated **prior to demodulation**
 - Since SS systems typically operate at very low SNR
 - ⇒This demodulation and generation of carrier reference will be **difficult**
- What if $d(t) \times c(t)$ with d(t) = -1 is used in the baseband DLL?

- Note that the baseband tracking loop analyzed previously has **ignored any data modulation**
 - Any communication system must convey information from the transmitter to the receiver

 \Rightarrow The carrier is modulated with the information

- The baseband loop would **not** function properly when the received signal is $d(t T_d) \times c(t T_d)$ rather than $c(t T_d)$
- Hence, the **noncoherent delay-lock tracking loop** is applied to **actual** spread-spectrum systems
 - Neither of these difficulties are present for the noncoherent delay-lock tracking loop

Prof. Tsai

31

Noncoherent Delay-Lock Tracking Loop (Cont.)

- The phase discriminator contains two **energy detectors**:
 - Not sensitive to data modulation or carrier phase

⇒ The discriminator can **ignore data modulation and carrier phase**

- A conceptual block diagram when the spreading modulation is binary phase-shift keying is shown in Fig. 4-9
- The received signal is a **data** and **spreading code**-modulated carrier with bandlimited AWGN

$$r(t) = \sqrt{2P}c(t - T_d)\cos[(\omega_0 t + \theta_d(t - T_d) + \phi] + n(t)$$

- $\theta_d(t - T_d)$ is the arbitrary data phase modulation, T_d is the transmission delay, ϕ is the random received carrier phase, ω_0 is the carrier radian frequency, and n(t) is the noise

• The received noise is assumed to be a bandlimited zero-mean Gaussian noise with a two-sided power spectral density of $N_0/2$

$$n(t) = \sqrt{2}n_I(t)\cos\omega_0(t) - \sqrt{2}n_Q(t)\sin\omega_0(t)$$

- Where $n_I(t)$ and $n_Q(t)$ are **independent** zero-mean low-pass white Gaussian noise with a two-sided power spectral density of $N_0/2$
- The received signal is power divided and then correlated with **early** and **late** spreading waveform modulated local oscillator signals

$$b(t) = 2\sqrt{2K_1} \cos[(\omega_0 - \omega_{IF})t + \phi']$$

– where $\omega_{\rm IF}$ is the intermediate radian frequency

$$a_1(t) = 2\sqrt{K_1}c(t - \hat{T}_d + \frac{\Delta}{2}T_c)\cos[(\omega_0 - \omega_{IF})t + \phi']$$
$$a_2(t) = 2\sqrt{K_1}c(t - \hat{T}_d - \frac{\Delta}{2}T_c)\cos[(\omega_0 - \omega_{IF})t + \phi']$$

• Consider only the intermediate frequency terms:

$$y_{1}(t) = \sqrt{K_{1}P}c(t - T_{d})c\left(t - \hat{T}_{d} + \frac{\Delta}{2}T_{c}\right)\cos\left[\omega_{IF}t + \phi - \phi' + \theta_{d}(t - T_{d})\right]$$
$$+\sqrt{K_{1}}n_{I}(t)c\left(t - \hat{T}_{d} + \frac{\Delta}{2}T_{c}\right)\cos\left(\omega_{IF}t - \phi'\right)$$
$$-\sqrt{K_{1}}n_{Q}(t)c\left(t - \hat{T}_{d} + \frac{\Delta}{2}T_{c}\right)\sin\left(\omega_{IF}t - \phi'\right)$$

Prof. Tsai

Noncoherent Delay-Lock Tracking Loop (Cont.)

$$y_{2}(t) = \sqrt{K_{1}P}c(t-T_{d})c\left(t-\hat{T}_{d}-\frac{\Delta}{2}T_{c}\right)\cos\left[\omega_{IF}t+\phi-\phi'+\theta_{d}(t-T_{d})\right]$$
$$+\sqrt{K_{1}}n_{I}(t)c\left(t-\hat{T}_{d}-\frac{\Delta}{2}T_{c}\right)\cos\left(\omega_{IF}t-\phi'\right)$$
$$-\sqrt{K_{1}}n_{Q}(t)c\left(t-\hat{T}_{d}-\frac{\Delta}{2}T_{c}\right)\sin\left(\omega_{IF}t-\phi'\right)$$

• Define the noise components by

$$\begin{cases} n_1(t) = \sqrt{\frac{K_1}{2}}c\left(t - \hat{T}_d + \frac{\Delta}{2}T_c\right)n'(t) & \text{early} \\ n_2(t) = \sqrt{\frac{K_1}{2}}c\left(t - \hat{T}_d - \frac{\Delta}{2}T_c\right)n'(t) & \text{late} \end{cases} \\ n'(t) = \sqrt{2}n_I(t)\cos(\omega_{IF}t - \phi') - \sqrt{2}n_Q(t)\sin(\omega_{IF}t - \phi') \end{cases}$$

Prof. Tsai

• For high processing gains (data symbols do not impact the correlator output), the only components of interest are

$$y_1(t) = \sqrt{K_1 P} c(t - T_d) c \left(t - \hat{T}_d + \frac{\Delta}{2} T_c \right) cos \left[\omega_{IF} t + \phi - \phi' + \theta_d (t - T_d) \right]$$
$$y_2(t) = \sqrt{K_1 P} c(t - T_d) c \left(t - \hat{T}_d - \frac{\Delta}{2} T_c \right) cos \left[\omega_{IF} t + \phi - \phi' + \theta_d (t - T_d) \right]$$

• The **DC component** of the spreading waveform product is the autocorrelation function of the spreading waveform

$$y_{1}(t) \approx \sqrt{K_{1}PR_{c}} \left[(\delta + \frac{\Delta}{2})T_{c} \right] \cos \left[\omega_{IF}t + \phi - \phi' + \theta_{d}(t - T_{d}) \right] \approx x_{1}(t)$$

$$y_{2}(t) \approx \sqrt{K_{1}PR_{c}} \left[(\delta - \frac{\Delta}{2})T_{c} \right] \cos \left[\omega_{IF}t + \phi - \phi' + \theta_{d}(t - T_{d}) \right] \approx x_{2}(t)$$

$$- \text{ where } \delta = (T_{d} - \hat{T}_{d})/T_{c}$$

Prof. Tsai

Noncoherent Delay-Lock Tracking Loop (Cont.)

• The signal component of the delay-lock discriminator output is:

$$\varepsilon(t,\delta) = [x_2^2(t) - x_1^2(t)]_{\text{lowpass}}$$

= $\frac{1}{2}K_1P\left\{R_c^2\left[(\delta - \frac{\Delta}{2})T_c\right] - R_c^2\left[(\delta + \frac{\Delta}{2})T_c\right]\right\}$
= $\frac{1}{2}K_1PD_{\Delta}(\delta)$

- where

$$D_{\Delta}(\delta) \equiv R_c^2 \left[\left(\delta - \frac{\Delta}{2} \right) T_c \right] - R_c^2 \left[\left(\delta + \frac{\Delta}{2} \right) T_c \right]$$

• For *m*-sequence spreading waveform with $\Delta \ge 1.0$:

$$D_{\Delta}(\delta) = \begin{cases} 0 & \text{for } -N+1+\frac{\Delta}{2} < \delta \le -\left(1+\frac{\Delta}{2}\right) \\ \frac{1}{N^2} - \left[1+\left(1+\frac{1}{N}\right)\left(\delta+\frac{\Delta}{2}\right)\right]^2 & \text{for } -\left(1+\frac{\Delta}{2}\right) < \delta \le -\frac{\Delta}{2} \\ \frac{1}{N^2} - \left[1-\left(1+\frac{1}{N}\right)\left(\delta+\frac{\Delta}{2}\right)\right]^2 & \text{for } -\frac{\Delta}{2} < \delta \le -\left(1-\frac{\Delta}{2}\right) \\ 2\left(1+\frac{1}{N}\right)\left[2-\left(1+\frac{1}{N}\right)\Delta\right]\delta & \text{for } -\left(1-\frac{\Delta}{2}\right) < \delta \le \left(1-\frac{\Delta}{2}\right) \\ \left[1+\left(1+\frac{1}{N}\right)\left(\delta-\frac{\Delta}{2}\right)\right]^2 - \frac{1}{N^2} & \text{for } \left(1-\frac{\Delta}{2}\right) < \delta \le \frac{\Delta}{2} \\ \left[1-\left(1+\frac{1}{N}\right)\left(\delta-\frac{\Delta}{2}\right)\right]^2 - \frac{1}{N^2} & \text{for } \frac{\Delta}{2} < \delta \le 1+\frac{\Delta}{2} \end{cases}$$
Prof. Tsai 39

Noncoherent Delay-Lock Tracking Loop (Cont.)

• For *m*-sequence spreading waveform with $\Delta \le 1.0$:

$$D_{\Delta}(\delta) = \begin{cases} 0 & \text{for } -N+1+\frac{\Delta}{2} < \delta \le -\left(1+\frac{\Delta}{2}\right) \\ \frac{1}{N^2} - \left[1+\left(\delta+\frac{\Delta}{2}\right)\left(1+\frac{1}{N}\right)\right]^2 & \text{for } -\left(1+\frac{\Delta}{2}\right) < \delta \le \left(\frac{\Delta}{2}-1\right) \\ -2\left(1+\frac{1}{N}\right)\Delta\left[1+\left(1+\frac{1}{N}\right)\delta\right] & \text{for } \left(\frac{\Delta}{2}-1\right) < \delta \le -\frac{\Delta}{2} \\ 2\left(1+\frac{1}{N}\right)\left[2-\left(1+\frac{1}{N}\right)\Delta\right]\delta & \text{for } -\frac{\Delta}{2} < \delta \le +\frac{\Delta}{2} \\ 2\left(1+\frac{1}{N}\right)\Delta\left[1-\left(1+\frac{1}{N}\right)\delta\right] & \text{for } \frac{\Delta}{2} < \delta \le \left(1-\frac{\Delta}{2}\right) \\ \left[1-\left(1+\frac{1}{N}\right)\left(\delta-\frac{\Delta}{2}\right)\right]^2 - \frac{1}{N^2} & \text{for } \left(1-\frac{\Delta}{2}\right) < \delta \le \left(1+\frac{\Delta}{2}\right) \end{cases}$$

- In the range near $\delta = 0$, $D_{\Delta}(\delta)$ is a **linear function** of δ
- The slope of $D_{\Delta}(\delta)$ near $\delta = 0$ is a function of Δ and equals zero when $\Delta = 2.0$
 - $-\Delta = 2.0$ is **never used** for noncoherent delay-lock tracking loop

Tau-Dither Noncoherent Tracking Loop

Prof. Tsai

Tau-Dither Noncoherent Tracking Loop

- The noncoherent delay-lock tracking loop is widely used. However, it has two major problems:
 - The early and late IF channels must be precisely amplitude balanced
 - If not, the discriminator characteristic is **offset** and does **not** produce **zero** output when the tracking error is zero
 - The DLL uses **costly components** somewhat freely
- The **tau-dither** tracking loop (TDL) solved these two problems:
 - Time sharing a single correlation channel for both early and late IF channels
 - The price paid is slightly worst noise performance and more difficult analysis

Block Diagram of Tau-Dither Noncoherent DLL

Tau-Dither Noncoherent Tracking Loop (Cont.)

- The discriminator has a single channel:
 - Switched between use as an early correlator and use as a late correlator by a switching signal q(t)
 - The signal q(t) is a square wave of frequency f_q which takes on values of ± 1
 - When q(t) = -1, the correlator functions as a **late** correlator
 - When q(t) = +1, the correlator functions as a **early** correlator
 - The signal q(t) is also used to multiply the squaring circuit output

Tau-Dither Noncoherent Tracking Loop (Cont.)

The input signal to the tau-dither loop is

$$r(t) = \sqrt{2P}c(t - T_d)\cos[(\omega_0 t + \theta_d (t - T_d) + \phi] + n(t)]$$
$$n(t) = \sqrt{2n_1}(t)\cos\omega_0(t) - \sqrt{2n_0}(t)\sin\omega_0(t)$$

The reference local oscillator output is

$$b(t) = 2\sqrt{K_1} \cos[(\omega_0 - \omega_{IF})t + \phi']$$
$$a(t) = 2\sqrt{K_1} c \left(t - \hat{T}_d + q(t)\frac{\Delta}{2}T_c\right) \cos[(\omega_0 - \omega_{IF})t + \phi']$$

- /

- An equivalent two-channel discriminator: Fig. 4-15
 - The output is switched between the early and late channels

$$q_1(t) = \frac{1}{2} [1 + q(t)]; \quad q_2(t) = \frac{1}{2} [1 - q(t)]$$

Prof. Tsai

by

Tau-Dither Noncoherent Tracking Loop (Cont.)

$$a_1(t) = 2\sqrt{K_1}c(t - \hat{T}_d + \frac{\Delta}{2}T_c)\cos[(\omega_0 - \omega_{IF})t + \phi']$$
$$a_2(t) = 2\sqrt{K_1}c(t - \hat{T}_d - \frac{\Delta}{2}T_c)\cos[(\omega_0 - \omega_{IF})t + \phi']$$

• The mixer output signals are

$$y_{1}(t) \cong \sqrt{2K_{1}P}R_{c} \left[(\delta + \frac{\Delta}{2})T_{c} \right] \cos \left[\omega_{IF}t + \phi - \phi' + \theta_{d}(t - T_{d}) \right] \equiv x_{1}(t)$$
$$y_{2}(t) \cong \sqrt{2K_{1}P}R_{c} \left[(\delta - \frac{\Delta}{2})T_{c} \right] \cos \left[\omega_{IF}t + \phi - \phi' + \theta_{d}(t - T_{d}) \right] \equiv x_{2}(t)$$

Tau-Dither Noncoherent Tracking Loop (Cont.)

• The signal component of the delay-lock discriminator output is:

$$(t,\delta) = \left[x_{2}^{2}(t) \underline{q_{2}(t)} - x_{1}^{2}(t) \underline{q_{1}(t)} \right]_{\text{lowpass}}$$

$$= \left\{ \frac{1}{2} \left[x_{2}^{2}(t) - x_{1}^{2}(t) \right] - \frac{1}{2} q(t) \left[x_{2}^{2}(t) + x_{1}^{2}(t) \right] \right\}_{\text{lowpass}}$$

$$= \frac{1}{2} K_{1} P \left\{ R_{c}^{2} \left[(\delta - \frac{\Delta}{2}) T_{c} \right] - R_{c}^{2} \left[(\delta + \frac{\Delta}{2}) T_{c} \right] \right\}$$

$$- \frac{1}{2} q(t) K_{1} P \left\{ R_{c}^{2} \left[(\delta - \frac{\Delta}{2}) T_{c} \right] + R_{c}^{2} \left[(\delta + \frac{\Delta}{2}) T_{c} \right] \right\}$$

• The first term is identical to that of a **Noncoherent Delay**-Lock Tracking Loop (4-50) and is the desired tracking error

Prof. Tsai

Е

Tau-Dither Noncoherent Tracking Loop (Cont.)

- The second term consists of harmonics of the **dithering frequency**
- If the dithering frequency is significantly **higher** than the bandwidth of the loop filter
 - The second term is rejected by the loop filter

$$\varepsilon(t,\delta) \cong \frac{1}{2} K_1 P \left\{ R_c^2 \left[(\delta - \frac{\Delta}{2}) T_c \right] - R_c^2 \left[(\delta + \frac{\Delta}{2}) T_c \right] \right\}$$
$$\equiv \frac{1}{2} K_1 P D_{\Delta}(\delta)$$

Double-Dither Noncoherent Tracking Loop

Prof. Tsai

Double-Dither Noncoherent Tracking Loop

- In certain applications, the **noise performance** degradation of the TDL loop relative to DLL is **unacceptable**
- The double-dither noncoherent tracking loop
 - It can solve the gain-imbalance problem of the DLL
 - The noise performance is the same as the DLL
 - The price paid is increased hardware complexity
- Two channels are used in the double-dither tracking loop
- The use of each channel **alternates** between **early** and **late** channel correlation

Code Tracking Loops for FH Systems

Code Tracking Loops for FH Systems

- The noncoherent DLL can also be used in a frequency-hopping spread-spectrum system
 - Use the block diagram of noncoherent DLL in a direct sequence spread-spectrum system, but with
 - The phase modulators are replaced with **frequency synthesizers**
 - The spreading waveform generator is replaced with a **spreading code generator** (the output is a digital signal which controls the frequency of the synthesizer)

Spreading waveform clock

2 ...

Spreading

code

generator

k

1

Voltage-

Controlled

Oscillator

g

• The received signal is

$$r(t) = \sqrt{2P} \cos \left[\omega_0 t + \sum_{n=-\infty}^{\infty} (\omega_n t + \phi_n) p_{T_c} (t - T_d - nT_c) + \theta_d (t - T_d) \right] + \sqrt{2n_I} (t) \cos \omega_0 t - \sqrt{2n_Q} (t) \sin \omega_0 t$$

- $-(\omega_0 + \omega_n)$ is the transmission frequency during time interval n
- $-\phi_n$ is the frequency synthesizer random phase
- $\theta_d(t)$ is the arbitrary data phase modulation
- The reference signal $a_1(t)$ and $a_2(t)$ are frequency hopped using the same hop pattern as used in the transmitter
 - Offset in phase from the receiver estimate of the transmission delay \hat{T}_d by $\pm \Delta/2$ chip (a chip is the frequency-hop dwell time T_c)

Prof. Tsai

$$a_{1}(t) = 2\sqrt{K_{1}}\cos\left[\left(\omega_{0} + \omega_{IF}\right)t + \sum_{n=-\infty}^{\infty}\left(\omega_{n}t + \phi_{n}'\right)p_{T_{c}}\left(t - \hat{T}_{d} + \frac{\Delta}{2}T_{c} - nT_{c}\right)\right]$$
$$a_{2}(t) = 2\sqrt{K_{1}}\cos\left[\left(\omega_{0} + \omega_{IF}\right)t + \sum_{n=-\infty}^{\infty}\left(\omega_{n}t + \phi_{n}'\right)p_{T_{c}}\left(t - \hat{T}_{d} - \frac{\Delta}{2}T_{c} - nT_{c}\right)\right]$$

 $-K_1$ is the mixer conversion loss

 $-\phi'_n$ is the receiver frequency synthesizer random phase

Prof. Tsai

Code Tracking Loops for FH Systems (Cont.)

The channel mixer output signal is (the sum frequency terms will be rejected by IF filter)

 $cos(x-y) \qquad cos(x+y) \text{ rejected}$ $y_1(t) = \sqrt{K_1 P} \cos \left[\omega_{IF} t - \sum_{n=-\infty}^{\infty} (\omega_n t + \phi_n) p_{T_c} (t - T_d - nT_c) - \theta_d (t - T_d) + \sum_{m=-\infty}^{\infty} (\omega_m t + \phi'_m) p_{T_c} \left(t - \hat{T}_d + \frac{\Delta}{2} T_c - mT_c \right) \right]$ $+ \sqrt{K_1} n_I(t) \cos \left[\omega_{IF} t + \sum_{n=-\infty}^{\infty} (\omega_n t + \phi'_n) p_{T_c} \left(t - \hat{T}_d + \frac{\Delta}{2} T_c - nT_c \right) \right]$ $- \sqrt{K_1} n_Q(t) \sin \left[\omega_{IF} t + \sum_{n=-\infty}^{\infty} (\omega_n t + \phi'_n) p_{T_c} \left(t - \hat{T}_d + \frac{\Delta}{2} T_c - nT_c \right) \right]$

- The signal component is centered on the IF only when
 - $p_{T_c}(t T_d nT_c)$ and $p_{T_c}(t \hat{T}_d + (\Delta/2)T_c mT_c)$ overlap - Overlap occurs on every hop interval
- When **no overlap** occurs, the signal component is translated to a frequency that **will not** pass the IF filter (**can be ignored**)
- The signal component may be replaced by an **equivalent** pulsed signal:

$$y_{1}'(t) = \sqrt{K_{1}P} \sum_{n=-\infty}^{\infty} p_{T_{c}} \left(t - T_{d} - nT_{c}\right) p_{T_{c}} \left(t - \hat{T}_{d} + \frac{\Delta}{2}T_{c} - nT_{c}\right)$$
$$\times \cos\left[\omega_{IF}t - \left(\phi_{n} - \phi_{n}'\right) - \theta_{d}\left(t - T_{d}\right)\right]$$
$$+ \sqrt{K_{1}}n_{II}(t)\cos\omega_{IF}t - \sqrt{K_{1}}n_{IQ}(t)\sin\omega_{IF}t$$

$$y_{2}'(t) = \sqrt{K_{1}P} \sum_{n=-\infty}^{\infty} p_{T_{c}} \left(t - T_{d} - nT_{c}\right) p_{T_{c}} \left(t - \hat{T}_{d} - \frac{\Delta}{2}T_{c} - nT_{c}\right)$$
$$\times \cos\left[\omega_{IF}t - \left(\phi_{n} - \phi_{n}'\right) - \theta_{d}\left(t - T_{d}\right)\right]$$
$$+ \sqrt{K_{1}}n_{2I}(t)\cos\omega_{IF}t - \sqrt{K_{1}}n_{2Q}(t)\sin\omega_{IF}t$$

- The ∆ is limited to 1.0 ⇒ the early and late reference signals are never simultaneously at the same frequency
 - ⇒ The early and late channel **noise processes** come from different band and are therefore **independent**

• The discriminator output is

$$\begin{split} \varepsilon(t,\delta) &= \frac{1}{2} K_1 P \Biggl[\sum_{n=-\infty}^{\infty} p_{T_c} \left(t - T_d - nT_c \right) p_{T_c} \Biggl(t - \hat{T}_d - \frac{\Delta}{2} T_c - nT_c \Biggr) \\ &- \sum_{m=-\infty}^{\infty} p_{T_c} \left(t - T_d - mT_c \right) p_{T_c} \Biggl(t - \hat{T}_d + \frac{\Delta}{2} T_c - mT_c \Biggr) \Biggr] \\ &+ \sqrt{2K_1 P} \cos \Bigl[\theta_d \left(t - T_d \right) \Bigr] \Bigl[n_{2I}^0(t) \beta_1(t) - n_{1I}^0(t) \beta_2(t) \Bigr] \\ &+ \sqrt{2K_1 P} \sin \Bigl[\theta_d \left(t - T_d \right) \Bigr] \Bigl[n_{2Q}^0(t) \beta_3(t) - n_{1Q}^0(t) \beta_4(t) \Bigr] \\ &+ \sqrt{2K_1 P} \sin \Bigl[\theta_d \left(t - T_d \right) \Bigr] \Bigl[n_{2Q}^0(t) \beta_1(t) - n_{1Q}^0(t) \beta_2(t) \Bigr] \\ &- \sqrt{2K_1 P} \cos \Bigl[\theta_d \left(t - T_d \right) \Bigr] \Bigl[n_{2Q}^0(t) \beta_3(t) - n_{1Q}^0(t) \beta_4(t) \Bigr] \\ &+ \Bigl[n_{2I}^0(t) \Bigr]^2 + \Bigl[n_{2Q}^0(t) \Bigr]^2 - \Bigl[n_{1I}^0(t) \Bigr]^2 - \Bigl[n_{1Q}^0(t) \Bigr]^2 \end{split}$$

• The DC component is

$$\varepsilon(t,\delta) = \frac{1}{2} K_1 P \left\{ R_{FH} \left[\left(\delta - \frac{1}{2} \right) T_c \right] - R_{FH} \left[\left(\delta + \frac{1}{2} \right) T_c \right] \right\} + n_s(t) + \sqrt{2K_1 P} \cos \left[\theta_d \left(t - T_d \right) - \phi(t) \right] n_{1I}^0(t) + \sqrt{2K_1 P} \sin \left[\theta_d \left(t - T_d \right) - \phi(t) \right] n_{1Q}^0(t) + \left[n_{2I}^0(t) \right]^2 + \left[n_{2Q}^0(t) \right]^2 - \left[n_{1I}^0(t) \right]^2 - \left[n_{1Q}^0(t) \right]^2 \right]$$

– where

$$R_{FH}(\tau) = \begin{cases} 0 & \text{for } \tau < -T_c \\ \frac{\tau}{T_c} + 1.0 & \text{for } -T_c \le \tau < 0 \\ -\frac{\tau}{T_c} + 1.0 & \text{for } 0 \le \tau < T_c \\ 0 & \text{for } T_c \le \tau \end{cases}$$

Prof. Tsai

Normalized S-curve for the Noncoherent CTL

Block Diagram of Noncoherent DLL (Slow FH)

- For a slow FH system, the dithering concept can be used
 - To solve the gain-imbalance problem of the DLL and
 - To reduce the **hardware complexity**

Dehopping Mixer Input

Prof. Tsai

