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Spreading and Despreading Sequences
• The spreading and despreading waveform c(t) is

– Usually generated using a shift register

– The contents during each time interval is some linear or 
nonlinear combination of the register contents

• For SS systems to operate efficiently, the phase of the received 
c(t – Td) must be initially determined and then tracked by the 
receiver

– Choose c(t) to have a two-valued auto-correlation function

• Correlated: a large value; Un-correlated: a small value

• The two-valued property is preferred but not necessary

– Code acquisition (initial synchronization) (Chapter 5)

– Code tracking (Chapter 4)
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Spreading and Despreading Sequences (Cont.)
• When SS systems is used for multiple access

– Sets of waveforms c1(t), c2(t), …, cm(t) must be found which 
have good (small) cross-correlation properties

– To assure small multiple access interference (MAI)

• When jamming resistance is a major concern

– The waveform c(t) must 

• Have an extremely long period and 

• Be difficult for the jammer to generate

– If the jammer can generate and track the waveform c(t), it 
can perfectly jam the signal 
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Binary Shift-Register Sequences
• A spreading code is 

– The output of the binary shift-register generator

– Having logical value: ‘0’ or ‘1’

• A spreading waveform (signal) is

– The function c(t) actually input to the spreading or 
despreading modulator

– Taking on values of  1 (‘0’  +1; ‘1’  –1)

• The ideal spreading code is

– An infinite sequence of equally likely random binary digits

– It is not feasible for practical applications

– Why?
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Binary Shift-Register Sequences (Cont.)
• The periodic pseudorandom codes (PN codes) are always 

employed 

– Periodic spreading codes with noise-like properties

• Easy to generate

• Good random property

– Maximum-length codes and Gold codes
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Walsh Codes – An Orthogonal Code Set
• The cross-correlation between different codes is zero

– An orthogonal code set

• The code period of Walsh codes must be a power of 2

– The code length must be 2, 4, 8, 16, …

• The number of available Walsh codes for a code period is 
limited

– If the code length is P = 2n, the number of Walsh codes is P

– A P-dimension space is spanned by a basis with P
orthogonal vectors
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Walsh Codes – An Orthogonal Code Set (Cont.)
• The Walsh codes can be easily generated based on a recursive 

approach 

• The initial layer (with a length 20 = 1) is ‘0’  H1 = [0]

• The n-th layer Walsh codes (with a code length 2n) can be 
generated based on the (n – 1)-th layer Walsh codes
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Walsh Codes – An Orthogonal Code Set (Cont.)
• The orthogonality between any two codes is evaluated based on 

the corresponding waveforms

• Code length 23 = 8: codes  0 0 1 1 0 0 1 1  and  0 1 1 0 0 1 1 0

– The corresponding waveforms: 

• One of the critical problems of using Walsh codes is 

– The orthogonality between any two codes may be destroyed 
when the two codes are not perfectly synchronized

+1 +1 –1 –1 +1 +1 –1 –1

+1 –1 –1 +1 +1 –1 –1 +1
+1 –1 +1 –1 +1 –1 +1 –1  0

+1 +1 –1 –1 +1 +1 –1 –1

+1 –1 –1 +1 +1 –1 –1 +1

+1 +1 –1 –1 +1 +1 –1 –1

+1 –1 –1 +1 +1 –1 –1 +1 +1

AsynchronousSynchronous
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Variable Length Walsh Codes
• In 3G CDMA systems, the Walsh codes are used for orthogonal 

channelization 

– Orthogonal variable spreading factor (OVSF) codes 

– Each code corresponds to a code channel

• The chip rate (spreading code rate) is fixed for different codes

• The spreading factor is the number of chips per symbol

– It can be 2, 4, 8, 16, 32, or 64

– Use the Walsh codes with code length 2, 4, 8, 16, 32, or 64

– A smaller spreading factor implies a higher symbol rate 

• Different codes of the same code length are orthogonal

• The number of available codes is limited

– The code resource is limited
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Variable Length Walsh Codes (Cont.)

0

00

01

0000

0011

00000000

00001111

00110011

00111100

0101

0110

01010101

01011010

01100110

01101001

0000000000000000

0000000011111111

0000111100001111

0000111111110000

0011001100110011

0011001111001100

0011110000111100

0011110011000011
0101010101010101

0101010110101010

0101101001011010

0101101010100101

0110011001100110

0110011010011001

0110100101101001

0110100110010110

SF=2 SF=4 SF=8 SF=16 SF=32 SF=64
W0

64

W32
64

W1
64

W2
64

W3
64

W4
64

W5
64

W6
64

W7
64
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Variable Length Walsh Codes (Cont.)
• Different codes with the ancestor-descendant relationship are 

not orthogonal

• If the OVSF code 0 0 1 1 (with code length 4) is used

– The spreading sequence is 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 …

• If the OVSF code 0 0 1 1 1 1 0 0 (with code length 8) is used

– The spreading sequence is 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 …

• There is strong mutual interference between the two OVSF 
codes ‘0 0 1 1’ and ‘0 0 1 1 1 1 0 0’

• If an ancestor code is used, the use of the corresponding 
descendant codes is forbidden
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Variable Length Walsh Codes (Cont.)

0

00

01

0000

0011

00000000

00001111

00110011

00111100

0101

0110

01010101

01011010

01100110

01101001

0000000000000000

0000000011111111

0000111100001111

0000111111110000

0011001100110011

0011001111001100

0011110000111100

0011110011000011
0101010101010101

0101010110101010

0101101001011010

0101101010100101

0110011001100110

0110011010011001

0110100101101001

0110100110010110

SF=2 SF=4 SF=8 SF=16 SF=32 SF=64

Code Channel
Used

Code Channel
unavailable

Code Channel
Used

Code Channel
unavailable
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Definitions & Mathematical Background
• A spreading code is a periodic sequence of ones and zeros with 

a period N

• A sequence of binary digits …, b–2, b–1, b0, b1, b2, … from the 
alphabet {0, 1} can be represented as a polynomial

– Because the code is periodic

• The spreading waveform c(t) is periodic with a period T = NTc

•  an =  1, and p(t) is a unit pulse between 0 and Tc

– ‘0’  +1; ‘1’  –1
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Definitions – Correlation
• The autocorrelation function of c(t) is

– Rc() is also periodic with a period T

• The cross-correlation function of c(t) and c(t) is

– If both waveforms have the same period T, the cross-
correlation function is also periodic with a period T

• Substituting                                      into Rcc′():

0

1
( ) ( ) ( )  

T

cR c t c t dt
T

0

1
( ) ( ) ( )   

T

ccR c t c t dt
T
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Definitions – Correlation (Cont.)
• Assume that  = kTc +  , where 0   < Tc

– The integral is nonzero when p(t – mTc) and p(t +  – nTc) 
overlap  only for n = k + m and n = k + m + 1

• Define  = t – mTc:
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Definitions – Correlation (Cont.)
• The discrete periodic cross-correlation function of two codes 

b(D) and b(D) is defined as

• The cross-correlation function becomes

– The discrete periodic cross-correlation functions bb′(k) and 
bb′(k + 1) should be calculated for Rcc′()
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Definitions – Correlation (Cont.)
• We represent a delay of k time units of the original sequence by 

b(k) 

• The discrete periodic cross-correlation is bb′(k) = (NA – ND)/N

– NA is the number of places in which b(0) agrees b(k)
(0  0 = 0 or 1  1 = 0)

– ND is the number of places in which b(0) disagrees b(k)            
(0  1 = 1 or 1  0 = 1) 

• The discrete periodic autocorrelation function of code b(D) is

• The autocorrelation function is

( , ) 1 ( ) ( 1) 
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Definition of Field
• A field, denoted by (S, ⊕, ⊙) or S, is a set of at least two

elements with two binary operations ⊕ and ⊙, which we 
call addition and multiplication, defined on S such that the 
following axioms are satisfied:

– For example, S = {e0, e1, …, eM – 1} has M elements

(1) The set is closed under the operation ⊕:  

(2) The associative law holds for ⊕: 

(3) The commutative law holds for ⊕: 

, ,a b a b   S S

    , , ,a b c a b c a b c      S

, ,a b b a a b    S
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Definition of Field (Cont.)
(4) There is a special (zero) element 0S, called the additive 

identity of S, such that

(5) For each aS, there is a corresponding element – aS, called 
the additive inverse of a, such that

(6) The set is closed under the operation ⊙:

(7) The associative law holds for ⊙: 

(8) The commutative law holds for ⊙: 

, ,a b a b  S S

    , , ,a b c a b c a b c  S   

, ,a b b a a b  S 

( ) 0,a a a    S

0 0 ,a a a a     S
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Definition of Field (Cont.)
(9) The operation ⊙ is distributive with respect to ⊕: 

(10)There is an element 1S, called the multiplicative identity of 
S, such that 1  0 and  

(11)For each nonzero element aS, there is a corresponding 
element a–1S, called the multiplicative inverse of a, such 
that

• The operations of subtraction and division are equivalent to

– Subtraction: the addition of the additive inverse

– Division: the multiplication by the multiplicative inverse
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Definition of Finite-Field (Cont.)
• A finite field is a field that has a finite number of elements in it

– We call the number as the order of the field

• The fundamental results on finite fields was first proved by 
Évariste Galois

Évariste Galois (October, 1811 – May, 1832) was a 
French mathematician famous for his contributions 
to the part of higher algebra now known as group 
theory. His theory provided a solution to the long-
standing question of determining when an 
algebraic equation can be solved by radicals (a 
solution containing square roots, cube roots, and so 
on but no other nonalgebraic functions). His work 
laid the fundamental foundations for Galois theory. 
He died in a duel at the age of twenty.
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Galois Fields
• There exists a field of order q if and only if q is a prime 

power (i.e., q = pm) with p prime and m  N. 

• Moreover, if q is a prime power, then there is only one field of 
that order. 

• The finite fields are often referred to as Galois fields: GF(q) 
for the field having q elements

– Prime fields: having any prime number p of elements

– Extension fields: having any integral power of a prime 
number pm of elements

– For example, the binary number field GF(2) and its 
extensions GF(2m)
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Prime Fields
• For prime fields, addition and multiplication are carried out by 

using the modulo-M operations 

+ 0 1 2
0 0 1 2
1 1 2 0
2 2 0 1

• 0 1 2
0 0 0 0
1 0 1 2
2 0 2 1

Modulo-3 Addition Modulo-3 Multiplication

+ 0 1
0 0 1
1 1 0

• 0 1
0 0 0
1 0 1

Modulo-2 Addition Modulo-2 Multiplication
S = {0, 1}

S = {0, 1, 2}
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Finite-Field Arithmetic – Addition
• Consider a polynomial of degree m over GF(2)

– where fj is an element of GF(2)

• The addition of f (D) and g(D) yields h(D)

– where (with modulo-2 additions)  

m
mDfDfDffDf  2

210)(

m
mDgDgDggDg  2

210)(
m

mDhDhDhhDh  2
210)(

mmm gfh

gfh
gfh
gfh








;
;
;

222

111

000
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Finite-Field Arithmetic – Multiplication 
• The multiplication of f (D) and g(D) yields h(D)

– where (with modulo-2 additions and multiplications)  

m
mDhDhDhhDh 2

2
2

210)(  

mmm

mmmm

mmmm

gfh

gfgfgfh
gfgfgfh

gfgfgfh
gfgfh

gfh
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11211
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0211202

01101

000
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Finite-Field Arithmetic – Division 
• The division of one polynomial over GF(2) by another yields a 

quotient q(D) and a remainder r(D):

• For example,

)()()()( DrDgDqDf 

435 1)(;1)( DDDDgDDf 
32)(;1)( DDDrDDq 

1

1

1

11

23

34
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245
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Finite-Field Arithmetic – Division (Cont.) 
• For example, f (D) = 1 + D6
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Extension Field GF(2m)
• The extension field has 2m elements

• Consider all the polynomials of degree m – 1 over GF(2)

– There are 2m such polynomials 

• Degree 0: 0; 1; 

• Degree 1: D; 1+D;

• …; 

• Degree m – 1:  

– Each polynomial can be used to represent a single element 
of the extension field GF(2m)

• Example of m = 2:

– The extension field contains 22 = 4 elements

– There are four polynomials of degree 1: 0, 1, D and 1+D

121 1;;1   mm DDDD 
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Extension Field GF(2m) – Addition
• The addition of two elements of GF(2m):

– The normal modulo-2 polynomial addition of the two 
polynomials

– The addition of any two elements of the field yields another 
element of the field

 The field is closed under addition

– The additive identity element is ‘0’

– The additive inverse of any element is the element itself

( ) ( 1) 1;
(1) ( ) 1;

( ) ( ) 0;
( 1) ( 1) 0;

  
  
 

   

D D
D D

D D
D D
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Extension Field GF(2m) – Multiplication 
• The multiplication of two elements of GF(2m):

– Must use a special primitive polynomial of degree m

• A primitive polynomial is a polynomial that generates all 
elements of an extension field from a base field. 

– Primitive polynomials are also irreducible polynomials 
Not the product of any two polynomials of lower degrees

– An irreducible polynomial may not be a primitive 
polynomial

• A polynomial h(D) of degree m is said to be primitive if

– h(D) divides Dn + 1

• where the smallest integer of n is n = 2m – 1

– Primitive polynomials of any degree m are known to exist
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Extension Field GF(2m) – Multiplication (Cont.) 
• The multiplication of two elements is defined as 

– The remainder of the normal polynomial product divided 
by the chosen primitive polynomial

– Modulo-h(D) multiplication

– The multiplication rules depend on the chosen primitive 
polynomial h(D)

– The remainder has degree at most m – 1, so it is another 
element of GF(2m)

 The field is closed under multiplication

– Polynomial multiplication is associative and commutative

 Multiplication in GF(2m) is also associative and 
commutative
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Extension Field GF(2m) – Multiplicative Inverse 
• Determine the multiplicative inverse elements

• Assume the chosen primitive polynomial is

• Consider the sequence of nonzero elements of GF(2m)

– Beginning with 1

2

2 3

1
1 ;

;
;

 
 
 


D D
D D D
D D D
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m DDhDhDhDh  
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Extension Field – Multiplicative Inverse (Cont.) 
• For all products where the normal polynomial product has 

degree less than m

– The remainder r(D) of modulo-h(D) (modulo-h(D) product) 
is the normal polynomial product

2 2

3 3

1 1

1 modulo - ( ) 1;
 modulo - ( ) ;
 modulo - ( ) ;
 modulo - ( ) ;

 modulo - ( ) ; 









m m

h D
D h D D
D h D D
D h D D

D h D D
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Extension Field – Multiplicative Inverse (Cont.)
• When Dm appear, the modulo-h(D) product is 

• The sequence of powers of D can be written as polynomials of 
degree less than or equal to m – 1

– Another element in GF(2m)

1
1

2
211)( 

 m
m DhDhDhDr 
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1

1

1

1
2

2
1

1

1
2

2
1

1

1
2
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Extension Field – Multiplicative Inverse (Cont.) 
• For example, m = 4; n = 24 – 1 = 15; h(D) = D4 + D + 1

 
   
   
 
 
 

0 1 2 2 3 2 3

4 3 4 5 2

6 2 2 3 7 2 3 3 4 3

8 3 2 4 2 9 2 3

10 3 2 4 2

11 2 2 3

12 2 3

:1; :1 ; : ; : ;
: 1 ; : 1 ;

: ; : 1 ;

: 1 1 ; : 1 ;

: 1 ;

: 1
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D D D D D D D D D D D D
D D D D D D D D D D

D D D D D D D D D D D D D D

D D D D D D D D D D D D D

D D D D D D D D

D D D D D D D

D D D D

 
 
 

2 3 4 2 3

13 2 3 2 3 4 2 3

14 2 3 3 4 3

15 3 4 16

1

: 1 1

: 1 1

: 1 1; :1 ;

      

          

       

       

D D D D D D D

D D D D D D D D D D D

D D D D D D D D

D D D D D D D D
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Extension Field – Multiplicative Inverse (Cont.) 
• A primitive polynomial of degree m divides   , so that

– The remainder of dividing by h(D) is 1

– The smallest integer n for which h(D) divides Dn + 1 is       
n = 2m – 1

– The multiplication rule repeats exactly 2m – 1 distinct 
elements

• D0 = 1; D1; D2; D3; …;           ;                ; D1; …

• There are two ways of representing the elements of GF(2m):

– A polynomial of degree m – 1 over GF(2) 

– Power of D

112 m

D
2 1 2 11 ( ) ( ) ( ) ( ) 1     

m m

D q D h D D q D h D
12 m

D

2 2m

D 2 1 1 
m

D
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Extension Field – Multiplicative Inverse (Cont.) 
• Using the second representation (power of D),                 leads 

the multiplicative inverse of any element of GF(2m)

– The multiplicative inverse of D j is

• For example,

– Then, we have the multiplicative inverse as follows

2 1 1 
m

D

  1 2 1 2 11
     

m mj j j jD D D D D

  1 2 1 2 1 1
       

m mj j j jD D D D D

1)( 4  DDDh

15124 n
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Extension Field – Multiplicative Inverse (Cont.)
Element

1 1

D D

D2 D2

D3 D3

D4 1+D

D5 D+D2

D6 D2+D3

D7 1+D+D3

D8 1+D2

D9 D+D3

D10 1+D+D2

D11 D+D2+D3

D12 1+D+D2+D3

D13 1+D2+D3

D14 1+D3

Inverse Element

1 1

D14 1+D3

D13 1+D2+D3

D12 1+D+D2+D3

D11 D+D2+D3

D10 1+D+D2

D9 D+D3

D8 1+D2

D7 1+D+D3

D6 D2+D3

D5 D+D2

D4 1+D

D3 D3

D2 D2

D D

 
   

17 7 7 8

3 2

2 5

1 1

1


 

    

   

D D D D

D D D

D D D

   2 5 41 1 1     D D D D D

3

2 3 5

2 5

1

1

 
  

  

D D
D D D

D D D

4 5 2

5 2

1 1

1

    
 

D

D D D D D
D D D
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Sequence Generator
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Sequence Generator Fundamentals
• The shift registers are used to generate PN codes
• The shift registers with feedback and/or feedforward

connections can be used to multiply and divide polynomials 
over GF(2)

• The sequences are assumed to begin at time zero, and a code 
sequence a(D) contains only positive powers of the delay 
operation D

• In the logic circuit:
– If the coefficient is a ‘1’: represents a connection
– If the coefficient is a ‘0’: represents no connection
– Circles containing a ‘+’: represents modulo-2 adders or 

exclusive-OR gates







0

)(
j

j
j DaDa
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Circuit for Multiplying Polynomials

2
0 1 2

( ) ( ) ( )
( )


     r

r

b D h D a D
h D h h D h D h D

Output 
r-1 ++

h1 h0

+ + 123r-2r

h3

+

h2

+

hr hr-2hr-1

b1(D)

= modulo-2 adder
hj = modulo-2 multiplication of input by hj

= single stage shift register

+

b(D)

a(D)

Input 

b2(D)
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Circuit for Multiplying Polynomials (Cont.)
• The output of the j-th modulo-2 adder (from left to right

starting with 1), denoted bj(D), is 

– For j = 2, …, r: bj (D) = bj–1 (D)D + a(D)hr – j

– For j = 1: b1 (D) = a(D)Dhr + a(D)hr–1

• By iteration:

– The circuit performs the normal polynomial multiplication
of the input sequence a(D) and the transfer polynomial h(D) 

1 0
2

2 1 0

1 2
1 2 0

1
1 0

0

( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )





 







  
  

   
   

   





r r

r

r r
r

r r
r r

r k
kk

b D b D b D D a D h
b D D a D Dh a D h

b D D a D D h a D h
a D D h a D D h a D h

a D D h h D a D
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Circuit for Multiplying Polynomials (Cont.)
• For a two input multiplier:

1 2
2

0 1 2
2

0 1 2

( ) ( ) ( ) ( ) ( )
( )
( )

 
   
   

r
r

r
r

b D   h D a D k D a D
h D   h h D h D .h D
k D   k k D k D .k D

output

b(D)

a2(D)

a1(D)

input2

input1

r+

hr

kr

r-1

hr-1

kr-1

r-2

hr-2

kr-2

hr-3

kr-3

+ + + 3

h3

k3

+ 2

h2

k2

+ 1

h1

k1

+

h0

k0

+
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• The output sequence: b(D) = h(D)a1(D) + k(D)a2(D) 

– h(D) is the transfer function for the first input a1(D) 

– k(D) is the transfer function for the second input a2(D) 

• Suppose that:

– k0 = 0 in the second transfer function k(D), and 

– a2(D) is taken from the output

• a2(D) = b(D)

• Since k0 = 0, we define k(D) = g(D) + 1

– g(D) is a transfer function with g0 = 1 (k0 = g0 + 1 = 0)   

Circuit for Multiplying/Dividing Polynomials
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Circuit for Multiplying/Dividing Polynomials(Cont.)
• The input-output relationship becomes:

1

1

1

( ) ( ) ( ) ( )[ ( ) 1]
( ) ( ) ( ) ( ) ( ) ( ) ( )[ ( ) 1] ( ) ( ) ( )

( ) ( ) ( ) ( )

  
      



b D a D h D b D g D
b D b D g D b D a D h D b D g D b D g D b D

b D g D a D h D

Fig. 3-3

output

b(D)

a1(D)

input

r+

hr

gr

r-1

hr-1

gr-1

r-2

hr-2

gr-2

hr-3

gr-3

+ + + 3

h3

g3

+ 2

h2

g2

+ 1

h1

g1

+

h0

+
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• If a polynomial c(D) (multiplicative inverse of g(D)) can be found

– g(D)c(D) = 1

– Then, we have b(D) = a1(D)h(D)c(D)  

• The coefficients of c(D) must satisfy:

0 0
min{ , }

0

1

0, 1, 2, coefficient of degree




  
j r

l j l
l

g c

g c j j

Circuit for Multiplying/Dividing Polynomials(Cont.)

)(

)(
)()(

)()()()()()(

)()()()(

1

1

1

Dg

Dh
DaDb

DcDhDaDcDgDb

DhDaDgDb






)(1)( DgDc 
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Circuit for Multiplying/Dividing Polynomials(Cont.)
• Consider the polynomial long division of 1 by g(D)
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Example
• The initial contents of the shift register are set to be all ‘0’

• We assume that the input sequence is a(D) = 1

– A ‘1’ at time zero followed by an infinite string of ‘0’

• The output is obtain by

• The output can also be verified by manually calculating the 
contents of the shift register

632

6

1
)(

DDDD

D
Db




6 2 3 6( ) ; ( ) 1h D D g D D D D D     

+ + + +

0h6h

6g 0g

b(D)a(D)
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Example (Cont.)

1716141312

1714131211

1611

1613121110

131210

1310987

12987

129876

6632

12111076

1

DDDDD

DDDDD

DD

DDDDD

DDD

DDDDD

DDDD

DDDDD

DDDDD

DDDDD















 

6 7 10 11 12( )b D D D D D D     
 0 0 0 0 0 0 1 1 0 0 1 1 1
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Example (Cont.)

0+ 0 0 + 0 + 0 + 0 b(D)a(D)

1+ 0 0 + 0 + 0 + 0 b(D)a(D)

0+ 1 0 + 0 + 0 + 0 b(D)a(D)

0+ 0 1 + 0 + 0 + 0 b(D)a(D)

0+ 0 0 + 1 + 0 + 0 b(D)a(D)

0D

1D

2D

3D

4D
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Example (Cont.)

0+ 0 0 + 0 + 1 + 0 b(D)a(D)

0+ 0 0 + 0 + 0 + 1 b(D)a(D)

1+ 0 0 + 1 + 1 + 1 b(D)a(D)

1+ 1 0 + 1 + 0 + 0 b(D)a(D)

0+ 1 1 + 0 + 1 + 0 b(D)a(D)

5D

6D

7D

8D

9D
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Example (Cont.)

0+ 0 1 + 1 + 0 + 1 b(D)a(D)

1+ 0 0 + 0 + 0 + 1 b(D)a(D)

1+ 1 0 + 1 + 1 + 1 b(D)a(D)

1+ 1 1 + 1 + 0 + 0 b(D)a(D)

10D

11D

12D

13D

 12111076)( DDDDDDb
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Example
• The initial contents of the shift register are set to be all ‘0’

• We assume that the input sequence is a(D) = 1

– A ‘1’ at time zero followed by an infinite string of ‘0’

• The output is obtain by

+

0h10h

6g 0g

b(D)

a(D)

+ + + + +

632105 1)(;1)( DDDDgDDDDh 

5 10

2 3 6

1
( )

1

D D D
b D

D D D
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Linear Feedback Shift-Register Generator (G)
• Consider a input sequence with a finite length:

– After the sequence ends, the circuit is equivalent to the 
feedback shift register

• This configuration is known as the Galois configuration

Fig. 3-5 High-speed linear feedback shift-register generator

Galois Configuration
output

b(D)
+ + + + + +

gr gr-1 gr-2 gr-3 g3 g2 g1

1ra 2a 1a 0a2ra 3ra
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Linear Feedback Shift-Register Generator
• Suppose that the input sequence a1(D) ends at time j (degree j)

– The highest power of D in a1(D)h(D) is D j+r

– The coefficient of any power of D greater than j+r is zero

– According to b(D)g(D) = a1(D)h(D)

• Since g0 = 1 

• Based on this relationship, we have another configuration – the 
Fibonacci configuration

0

0, for 
r

m i m
m

g b i j r


  

1

1

0, for 

, for 

r

i m i m
m

r

i m i m
m

b g b i j r

b g b i j r







   

  



 A feedback 
system
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Fibonacci Sequence
• The Fibonacci numbers form a sequence defined by the 

following recurrence relation:

• That is, after two starting values, each number is the sum of the 
two preceding numbers. 

– 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 
1597, 2584, 4181, 6765, 10946, 17711, 28657, 46368, 
75025… 

0 if 0;

( ) 1 if 1;

( 1) ( 2) if 1.

n

F n n

F n F n n
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Linear Feedback Shift-Register Generator (F)
• A second circuit configuration for linear feedback shift-

register generator – the Fibonacci configuration

– The output is 
2

1 2( ) ( ) ( ) ( )r
rb D g Db D g D b D g D b D   

Fig. 3-6 Linear feedback shift-register generator

Fibonacci Configuration

output b(D)

+ + + + + +

grgr-1gr-2gr-3g3g2g1

)(DDb )(2 DbD )(3 DbD )(3 DbDr )(2 DbDr )(1 DbDr )(DbDr
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Linear Feedback Shift-Register Generator (Cont.)
• The configuration of Fig. 3-6 is commonly used:

– Delayed outputs for all delays up to r are available

• For the configuration of Fig. 3-5:

– Delayed outputs are not available

– Function at higher speeds than that of Fig. 3-6

• Since there is less propagation delay in the feedback 
path
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Output with Initial Contents (G)
• We need to determine the output of Fig. 3-5 given the initial 

contents of the shift register

• The output b(D) of Fig. 3-5 (without input) is identical to 

– The output b(D) beginning at time r of Fig. 3-3 (with input) 

• h(D) = D r and 

• An input a1(D) = a0 + a1D + a2D2 + … + ar–1D r–1

output

b(D)
+ + + + + +

gr gr-1 gr-2 gr-3 g3 g2 g1

1ra 2a 1a 0a2ra 3ra)(1 Da
+
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Output with Initial Contents (G) (Cont.)
• At time r, the input have been completely loaded as the initial 

contents of the shift register

– After time r, there will be no input

 Fig. 3-3 will converge to Fig. 3-5

• The output of Fig. 3-3:                  

• For the first r time units, the output b(D) is zero

– The initial contents of shift register are all ‘0’

– The output beginning at time r is simply b(D) shifted by r
time units (D j in b(D) is D j – r in b(D), for j > r) 

 Beginning at time r: 1( )
( ) ( )

( )
r a D

b D D b D
g D

  

)(

)(

)(

)()(
)( 11

Dg

DaD

Dg

DaDh
Db

r
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Example (G)
• Assume that the initial shift-register load is ‘0001’ (a3, a2, a1, a0)

• The transfer function (generator polynomial) is

• The initial load: a1(D) = 1

• The output:

431)( DDDDg 

0 + 0 0 + 1 b(D)

43
1

1

1

)(

)(
)(

DDDDg

Da
Db
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Example (G) (Cont.)

1097

10976

6

6532

532

542

43

43

43

762

1

11

1

DDD

DDDD

D

DDDD

DDD

DDDD

DDD

DDD

DDD

DDDD













 

2 6 7( ) 1
111000 111000

b D D D D D     
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Example (G) (Cont.)

0 + 0 0 + 1 b(D)

1 + 1 0 + 1 b(D)

1 + 0 1 + 1 b(D)

1 + 0 0 + 0 b(D)

 b0 = 1

 b1 = 1

 b2 = 1

 b3 = 0
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Example (G) (Cont.)

0 + 1 0 + 0 b(D)

0 + 0 1 + 0 b(D)

0 + 0 0 + 1 b(D)

 b4 = 0

 b5 = 0

 b6 = 1




111000111000

1)( 762


 DDDDDb

…
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Output with Initial Contents (F)
• We need to determine the output of Fig. 3-6 given the initial 

contents of the shift register

• Suppose that the initial contents for the circuit of Fig. 3-6 is 

• Define c(D) to be the output of the rightmost shift register of 
Fig. 3-6 

2 1
0 1 2 1( ) r

ra D a a D a D a D 
    

)()( DbDDc r

output b(D)

ar-1 ar-2

+ + + + + +

grgr-1gr-2gr-3g3g2g1

ar-3 a2 a1 a0
)(DDb )(2 DbD )(3 DbD )(3 DbDr )(2 DbDr )(1 DbDr )(DbDr

)(Dc
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Output with Initial Contents (F) (Cont.)
• Then, the first r elements of c(D) are a0, a1, a2, …, ar–1

• Determine directly based on Fig. 3-6 is hard 

– Determine through Fig. 3-5

• Since the circuits of Fig. 3-5 and Fig. 3-6 are equivalent

– The initial load of Fig. 3-5 can be chosen such that 

• b(D) (of Fig. 3-5) = c(D) (of Fig. 3-6)   

a(D)Fig. 3-6:

Fig. 3-5:

)()( DcDDb r

)(Da ( )b D



( )
||
( )

c D

b D

( )
||
( )

c D

b D
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Output with Initial Contents (F) (Cont.)
• Given an initial load a(D) of the circuit in F-Config. 

• Determine the first r output elements in c(D) (F-Config.) based 
on a(D) 

• Determine the first r output elements in b'(D) (G-Config.) 
based on c(D) 

• Find the initial load a'(D) of the circuit in G-Config. based on 

– The first r output elements in b'(D)  

– The polynomial g(D) 

• Find the complete output sequence b'(D) in G-Config.

– b'(D) = a'(D)/g(D) 

• Determine the complete sequence c(D) in F-Config. 

• Determine the complete sequence b(D) in F-Config. 
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Output with Initial Contents (F) (Cont.)
• Let the initial load of Fig. 3-5 that accomplishes this (b(D)) be

• Because the first r elements of c(D) are (a0, a1, a2, …, ar–1)

– The first r output elements of b(D) should also be (a0, a1, 
a2, …, ar–1)

– Because c(D) = D rb(D) and b(D) = c(D), b(D) becomes

• According to

2 1 1
0 1 2 1 1

r r r
r r ra a D a D a D b D b D 
         

2 1 1
0 1 2 1 1

2 1
0 1 2 1

2
0 1 2

r r r
r r r

r
r

r
r

a a D a D a D b D b D
a a D a D a D

g g D g D g D

 
 




       
      


   

 



1( ) ( )
( ) ( )

( ) ( )

a D a D
b D b D

g D g D


  

2 1
0 1 2 1( ) r

ra D a a D a D a D 
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Output with Initial Contents (F) (Cont.)
• Thus the initial state of Fig. 3-5 (a(D)) , which produces the 

output sequence b(D) as Fig. 3-6 with the initial load of a(D),

– Can be found by equating the first r coefficients

• None of the coefficients bj, j  r, affect the calculation of aj
(a(D) has degree r – 1 and a(D) has degree r – 1)

• The desired initial load a is the first r coefficients of a(D)g(D)  

– The output b(D) is                     

– That is, the elements of the a(D)/g(D) except the first r
output elements

1
1( ) ( ) ( )r r

r ra D b D b D g D a D
       

)(

)(
)()()(

Dg

DaD
DbDDcDDb

r
rr 
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Example (F)
• Initial shift-register load: ‘0001’ (a3, a2, a1, a0)

• The transfer function (generator polynomial) is

• The initial load: a1(D) = 1

• The equivalent initial load for Fig. 3-5:

431)( DDDDg 

 4 5 2 3
4 5 0 1 2 3

0 0

1 1

2 2

3 3

( ) ( )

1
1
0
1

g D b D b D g D a a D a D a D

a g
a g
a g
a g

           
  
  
  
  



0

+

0 0

+

1

b(D)

c(D)
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Example (F) (Cont.)
• The complete output sequence is equivalent to

43

3

1

1

)(

)(
)(

DDD

DD

Dg

Da
Db









4 5 6 10

3 4 3

3 4

4

4 5 7 8

5 7 8

5 6 8 9

6 7 9

6 7 9 10

10

1

1 1

1

D D D D

D D D D D

D D D

D
D D D D

D D D
D D D D

D D D
D D D D

D

    

    

  

  
 
  

 
  






100011100011

1)( 10654


 DDDDDb
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Example (F) (Cont.)
• Multiplying by D –r = D –4

• The preceding output ‘1000’ is the initial load of the shift 
register

4 4 2 6 7 8( ) ( ) 1
111000 111000

b D D b D D D D D D D         
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Example (F) (Cont.)

0

+

0 0

+

1

b(D)

c(D)

1

+

0 0

+

0

b(D)

c(D)

1

+

1 0

+

0

b(D)

c(D)

1

+

1 1

+

0

b(D)

c(D)

 1

 1

 1

 0

 1

 0

 0

 0
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Example (F) (Cont.)

0

+

1 1

+

1

b(D)

c(D)

0

+

0 1

+

1

b(D)

c(D)

0

+

0 0

+

1

b(D)

c(D)

 0

 0

 1




111000111000

1)( 762


 DDDDDb

 1

 1

 1
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Linear Feedback Shift-Register Generator (Cont.)
• Several observations about G-Config. and F-Config. are made:

– Given nonzero initial conditions, neither of the registers 
will ever reach an all-zero state

• If an all-zero state occurs, the output becomes all-zero

– Since the register contains r stages and an r-stage shift 
register has at most 2r – 1 nonzero states

 The output must be periodic with a period of at most 2r – 1 

– The period can be significantly less than 2r – 1 

– The same circuit may generate many different output 
sequences

• The output depends on the initial state of the shift 
register
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Example
• Based on the following circuit, there are four different sets of 

shift-register states 

• These four possible cycles have periods of 1, 1, 2, and 4

• All possible shift-register states are included in one of the four 
cycles (1+1+2+4 = 8 = 23)

+ +

Cycle 1
0 0 0
0 0 0
0 0 0




Cycle 2
1 1 1
1 1 1
1 1 1




Cycle 3
0 1 0
1 0 1
0 1 0
1 0 1




Cycle 4
1 0 0
1 1 0
0 1 1
0 0 1
1 0 0
1 1 0
0 1 1
0 0 1
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Linear Feedback Shift-Register Generator (Cont.)
• The maximum possible period for an arbitrary feedback shift-

register connection defined by g(D):

– Can be found by the reciprocal polynomial of g(D):

• The maximum possible period is the smallest possible integer 
N for which DN + 1 is divisible by gr(D)

A polynomial hr(D) such that

 ( ) 1r
rg D D g D

( ) ( ) 1N
r rg D h D D 
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Example
• Consider the generator polynomial

• The smallest possible integer N for which DN + 1 is divisible by 
gr(D) is

– N = 6

• The maximum possible period is 6 (< 24 – 1 = 15)

3 4( ) 1g D D D D   

 
 

4

4 1 3 4

4 3

( ) 1

1

1

rg D D g D

D D D D

D D D
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State-Machine Representation
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State-Machine Representation
• The shift-register generator may be viewed as a state machine

– Whose state at time n is the contents of the shift register 
represented by a column vector

– Define the state at time n by 

0,

1,

2,

2,

1,

n

n

n
n

r n

r n

s

s

s

s
s





 
 
 
   
 
 
  

S
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State-Machine Representation (G)
• Consider G-Config.  

– The contents of the shift register at time n+1

b(D)
sr-1 + + + + +

gr gr-1 gr-2 gr-3 g2 g1

sr-2 sr-3 s2 s1 s0

0 1 1 1 0

1 1 2 2 0

2 1 1 1 0

1 1 0

,n ,n ,n

,n ,n ,n

r- ,n r- ,n r- ,n

r- ,n r ,n

s s g s
s s g s

s s g s
s g s
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State-Machine Representation (G) (Cont.)
• Define the Galois state transition matrix G as the r  r square 

matrix

• The state at any time n can be found as

0 1 01

1 1 12

2 1 23
1

2 1 21

1 1 1

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0

,n ,n

,n ,n

,n ,n
n n

r ,n r ,nr

r ,n r ,nr

s sg

s sg

s sg

s sg

s sg








  

  

    
    
    
    

        
    
    
    

        

S G S





      



1 0

2 1 0

0
n

n

 
    

 

S G S
S G S G G S

S G S
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State-Machine Representation (G) (Cont.)
• Find the state at time n from the state at time n + 1:

• The state at any time in the past:

• The output of the shift-register generator at time n:

nnn SSGGSG  


 1
1

1

1 k

n k n


    S G S

 

 

0

1

2

1

0

1 0 0 0

1 0 0 0

,n

,n

n

r ,n

r ,n
n

s

s

b

s

s




 
 
 
  
 
 
  

  G S
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State-Machine Representation (F)
• Similar results for F-Config. 

b(D)

sr-1 sr-2

+ + + + + +

grgr-1gr-2gr-3g3g2g1

sr-3 s2 s1 s0

 1 2 3 1 0
n

n r r r rb g g g g g    F S

0 1 0

1 1 1

2 1 21

1 1 11 2 1

0 1 0 0

0 0 1 0

0 0 0 1

,n ,n

,n ,n

,n ,nn n

r ,n r ,nr r r

s s

s s

s s

s sg g g g







   

    
    
    
        
    
    
        

S F S
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Example
• The Galois state-transition matrix is

• The state at time n = 0 is

0 + 0 0 + 1 b(D)

1 1 0 0

0 0 1 0

1 0 0 1

1 0 0 0

 
 
 
 
 
 

G

0

1

0

0

0

 
 
 
 
 
 

S
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Example (Cont.)
• At any time n, the output is

• For n = 0

• For n = 1

 

1 1 0 0 1

0 0 1 0 0
1 0 0 0

1 0 0 1 0

1 0 0 0 0

n

nb

   
   
     
   
   
   

   

0

0

1 1 0 0 1 1

0 0 1 0 0 0
1 0 0 0 1 0 0 0 1

1 0 0 1 0 0

1 0 0 0 0 0

b

     
     
          
     
     
     

   

1

1

1 1 0 0 1 1

0 0 1 0 0 0
1 0 0 0 1 1 0 0 1

1 0 0 1 0 0

1 0 0 0 0 0

b
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Example (Cont.)
• For n = 2

• For n = 3

 

   

2

1 1 0 0 1 1 0 0 1
0 0 1 0 0 0 1 0 0

1 0 0 0
1 0 0 1 1 0 0 1 0
1 0 0 0 1 0 0 0 0
1 1 1 0 1 1
1 0 0 1 0 0

1 0 0 0 1 1 1 0 1
0 1 0 0 0 0
1 1 0 0 0 0

b

     
     

        
     
     
     
     

          
     
     

 

   

3

1 1 1 0 1 1 0 0 1
1 0 0 1 0 0 1 0 0

1 0 0 0
0 1 0 0 1 0 0 1 0
1 1 0 0 1 0 0 0 0
0 1 1 1 1 1
0 1 0 0 0 0

1 0 0 0 0 1 1 1 0
0 0 1 0 0 0
1 1 1 0 0 0

b
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Maximal-Length Sequences
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Maximal-Length Sequences
• The maximum possible period is the smallest possible integer N

for which DN + 1 is divisible by the reciprocal polynomial gr(D) 

• Consider the linear feedback shift-register generators (Fig. 3-5 
or Fig. 3-6) with g(D) a primitive polynomial

– The smallest N for g(D) of degree r: N = 2r – 1   

– Result in a cycle with period N = 2r – 1 

– There are a total of 2r – 1 nonzero states  all nonzero 
states are passed through in this cycle

– There is only one possible cycle

• Maximal-length sequence or m-sequence: 

– Shift-register sequence have the maximum possible period 

– A different initial condition results in a different code phase
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Properties of m-Sequences
• Property I: A maximal-length sequence contains one more ‘1’ 

than ‘0’. The number of ones in the sequence is ½(N+1) = 2r – 1

– Consider the generator of G-Config., the rightmost symbol
of the shift-register state is the output symbol

– The shift-register passes through all nonzero states

– 2r – 1 = ½(N+1) states have a ‘1’ in the rightmost symbol 
(XX…XX1, r – 1 symbols can be ‘1’ or ‘0’  2r – 1 states)

– 2r – 1 – 1 states have a ‘0’ in the rightmost symbol 
(XX…XX0, 2r – 1 – 1 states, except the all-zero state)

output

b(D)
+ + + + + +

gr gr-1 gr-2 gr-3 g3 g2 g1
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Properties of m-Sequences (Cont.)
• Property II: The modulo-2 sum of an m-sequence and any 

phase shift of the same sequence is another phase of the same 
m-sequence (shift-and-add property)

– Consider the generator of G-Config., the output symbol is 
given by 

– A different initial condition results in a different phase of the 
same m-sequence. 

– Let b(D) and b(D) are two different phases

• where a(D) and a(D) are distinct initial conditions

)(

)(
)( 1

Dg

Da
Db 

( ) ( )
( ) ; ( )

( ) ( )

a D a D
b D b D

g D g D
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Properties of m-Sequences (Cont.)
– The modulo-2 sum

– The modulo-2 sum of any two distinct initial conditions is a 
third distinct initial conditions

– The output sequence of a(D) is

– The resultant is a third distinct phase of the original 
sequence b(D)

)(

)(

)(

)]()([
)()(

Dg

Da

Dg

DaDa
DbDb







)(
)(

)(
Db

Dg

Da 


( ) ( ); ( ) ( )a D a D a D a D   

( ) ( ); ( ) ( )b D b D b D b D   
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Properties of m-Sequences (Cont.)
• Consider a primitive polynomial g(D) = 1+D+D4

– Initial condition a(D) = 1

• b(0) = 1 1 1 1 0 1 0 1 1 0 0 1 0 0 0 

– The number of ‘1’ is 8 and the number of ‘0’ is 7; 
• b(0) =            1 1 1 1 0 1 0 1 1 0 0 1 0 0 0 
• b(6) =            0 1 1 0 0 1 0 0 0 1 1 1 1 0 1 
• b(0) + b(6) = 1 0 0 1 0 0 0 1 1 1 1 0 1 0 1 = b(8)

+

011010001…

011010001…

011010001…
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Properties of m-Sequences (Cont.)
• Property III: If a window of width r is slide along the 

sequence for N shifts, each r-tuple expect the all-zero r-tuple 
will appear exactly once

– Consider the generator of F-Config., the output sequence
b(D) passes through the shift register of this generator

– The window of width r is the state of the shift register

– For N shifts, it will be a full cycle of the sequence 

– The shift register passes through all nonzero states exactly 
once 

b(D)

+ + + + + +

grgr-1gr-2gr-3g3g2g1
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Properties of m-Sequences (Cont.)

1 0 1 1 0 1 0 0 0 1 0 1 1 1 1 0 0 1 0 0 …

b(D))(DDb)(2 DbD)(9 DbD

1 0 1 1 0 1 0 0 0 1 0 1 1 1 1 0 0 1 0 0 …

b(D))(DDb)(2 DbD)(9 DbD

…

1 0 1 1 0 1 0 0 0 1 0 1 1 1 1 0 …

b(D))(DDb)(2 DbD)(9 DbD

Full cycle
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Properties of m-Sequences (Cont.)
• Property IV: The periodic autocorrelation function b(k) is 

two-valued and is given by                                                    

– where l: any integer, N: sequence period

– The value of the periodic autocorrelation function b(k) is

• In the modulo-2 sum of the sequence b and the k-th
cyclic shift of b, calculate the value 

– NA is the number of zeros (agree) 

– ND is the number of ones (disagree)

1.0,
( )

1 ,b

k lN
k

N k lN



   

 
N

NN DA 
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Properties of m-Sequences (Cont.)
– For k = lN: 

• The k-th cyclic shift of b is identical to b

 NA = N, ND = 0, and b(lN) = N/N = 1.0

– For k  lN: 

• The modulo-2 sum is another phase of the original 
sequence (by Property II)

• By Property I, there is one more ‘1’ than ‘0’ in the 
modulo-2 sum 

 NA – ND = – 1, and b(k) = – 1/N
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Properties of m-Sequences (Cont.)
• Consider a primitive polynomial g(D) = 1+D+D4

– Initial condition a(D) = 1

• b(0) =   1 1 1 1 0 1 0 1 1 0 0 1 0 0 0 

• b(15) = 1 1 1 1 0 1 0 1 1 0 0 1 0 0 0 = b(30) = b(45) = …

• b(0) + b(15) = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  b(15) = 1.0

• b(0) = 1 1 1 1 0 1 0 1 1 0 0 1 0 0 0 

• b(6) = 0 1 1 0 0 1 0 0 0 1 1 1 1 0 1 

• b(0) + b(6) = 1 0 0 1 0 0 0 1 1 1 1 0 1 0 1 = b(8)

 b(6) = –1/15
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Properties of m-Sequences (Cont.)
• Property V: Define a run as a subsequence of identical 

symbols within the m-sequence. The length of this 
subsequence is the length of the run. Then, for any m-sequence, 
there is 

1. 1 run of ones of length r

2. 1 run of zeros of length r – 1 

3. 1 run of ones and 1 run of zeros of length r – 2 

4. 2 runs of ones and 2 runs of zeros of length r – 3 

5. 4 runs of ones and 4 runs of zeros of length r – 4 

…

r. 2r–3 runs of ones and 2r–3 runs of zeros of length 1
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Properties of m-Sequences (Cont.)
• Proof of Property V:

– Consider the generator of F-Config., there can be no run of 
ones having length l > r

• Since it requires that the all-ones state is followed by 
another all-ones state

• This cannot occur since each state occurs only once
b(D) = 1

1
)(DDb )(2 DbD )(3 DbD )(3 DbDr )(2 DbDr )(1 DbDr )(DbDr

1 1 1 1 1

b(D)

1
)(DDb )(2 DbD )(3 DbD )(3 DbDr )(2 DbDr )(1 DbDr )(DbDr

1 1 1 1 1
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Properties of m-Sequences (Cont.)

– There is a single run of r consecutive ones, and this run is 
preceded by a zero and followed by a zero

• State 11…11 occurs only once

1  1  1  …  1  1  1

Length r

Length r
Two all-one states
 Impossible
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Properties of m-Sequences (Cont.)
– 1 run of zeros of length r – 1 

• A run of r – 1 zeros must be preceded by and followed 
by a one; otherwise the state 00…00 will occur

– The state 00…01 is followed immediately by the 
state 10…00 (00…01  10…00)

• Each state occurs only once 1 run of zeros of length 
r – 1b(D) = 0

0
)(DDb )(2 DbD )(3 DbD )(3 DbDr )(2 DbDr )(1 DbDr )(DbDr

0 0 0 0 1

b(D)

0
)(DDb )(2 DbD )(3 DbD )(3 DbDr )(2 DbDr )(1 DbDr )(DbDr

0 0 0 0 0
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Properties of m-Sequences (Cont.)
– No run of ones of length r – 1 

• A run of r – 1 ones must be preceded by and followed by 
a zero  The state 11…10 is followed immediately by 
the state 01…11 (11…10  01…11)

• These two states are also passed through in generating 
the run of r ones (11…10  11…11  01…11)

• Each state occurs only once  no run of ones of length 
r – 1 

b(D) = 0

1
)(DDb )(2 DbD )(3 DbD )(3 DbDr )(2 DbDr )(1 DbDr )(DbDr

1 1 1 1 0

b(D)

0
)(DDb )(2 DbD )(3 DbD )(3 DbDr )(2 DbDr )(1 DbDr )(DbDr

1 1 1 1 1



Prof. Tsai 109

Properties of m-Sequences (Cont.)
– Consider a run of k ones or zeros where 1  k  r – 2

• A run of k ones (zeros) must be preceded by and 
followed by a zero (one) 

• The state must be X…X011…110X…X with the r – k –
2 remaining positions taking on arbitrary values

 There are 2r–k–2 possible ways

• There are 2r–k–2 runs of k ones or zeros
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Power Spectrum of m-Sequences
• The power spectrum of c(t) is the Fourier transform of the 

autocorrelation function Rc() (0    Tc,   = kTc + )  

• Since b(k) is periodic, Rc() is also periodic and has a period 
T = NTc

( , ) (1 ) ( ) ( 1) (Eq. (3-8))

1 1
( ) (1 ) 1.0 ( ) 1 (1 ), 0

1 1 1
( ) (1 ) ( ) ( ) , ( 1)

1 1 1
( ) (1 ) ( ) 1.0 (1 ) , ( 1)

c b b
c c

c c
c c c

c c c
c c

c c c
c c c

R k k k
T T

R T
T T N T N

R T N T
T N T N N

R N T NT
T N T T N N
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Power Spectrum of m-Sequences (Cont.)

1.0

N

1
cT

cNT

 cR
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Power Spectrum of m-Sequences (Cont.)
• By taking the Fourier transform:

0

2 2 2
0 , 0 0

( ) ( )

where 1 , [( 1) ]sinc ( / ), and 1

c m
m

m m c

S f P f mf

P N P N N m N f NT
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Power Spectrum of m-Sequences (Cont.)
• Suppose the m-sequence c(t) is biphase (–1, +1) and modulates 

a sinusoidal carrier having power P and frequency fc

– The power spectrum of this modulated carrier is 

– The resultant power spectrum is a translation of the discrete 
spectrum Sc( f ) upward and downward by a frequency fc

– In most SS systems, the carrier is randomly modulated by 
data as well as the spreading code 

 The transmitted spectrum is continuous and not discrete

( ) 2 ( ) cos(2 )cs t Pc t f t

( ) ( )* ( ) ( )* ( )
2 2s c c c c

P P
S f S f f f S f f f    

Convolution
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Polynomials Yielding m-Sequences
• Table 3-5 presents the primitive polynomials used to generate 

m-sequences

– All polynomials are specified by an octal number that 
defines the coefficients of g(D)   

– Beginning with g0 on the right and proceeding to gr in the 
last nonzero position on the left

• Example 3-13:

– [367]:

765421)( DDDDDDDg 

);()111(7
);()110(6
);()011(3
tcoefficienbinaryoctal

012

345

678

g,g,g
g,g,g
g,g,g
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Polynomials Yielding m-Sequences (Cont.)
• Asterisk(): with only two feedback connections

Degree Octal Representation of Generator Polynomial

2 [7]*

3 [13]*

4 [23]*

5 [45]*, [75], [67]

6 [103]*, [147], [155]

7 [211]*, [217], [235], [367], [277], [325], [203]*, [313], [345]

8 [435], [551], [747], [453], [545], [537], [703], [543]

9 [1021]*, [1131], [1461], [1423], [1055], [1167], [1541], 
[1333], [1605], [1751], [1743], [1617], [1553], [1157]

10 [2011]*, [2415], [3771], [2157], [3515], [2773], [2033], 
[2443], [2461], [3023], [3543], [2745], [2431], [3177]
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Polynomials Yielding m-Sequences (Cont.)
• The entries followed by an asterisk correspond to circuit 

implementation with only two feedback connections

– Very useful for high-speed applications (less propagation 
delay)

– [211]*:

731)( DDDg 
8 7 6 5 4 3 2 1 0

octal binary coefficient
211 (010001001) ( , , , , , , , , )g g g g g g g g g 

+

b(D)



Prof. Tsai 117

Polynomials Yielding m-Sequences (Cont.)
• The list of primitive polynomials in Table 3-5 is not complete

• The number of primitive polynomials of degree r is

– where pi are the prime factors of 2r – 1, ei are positive 
integers 

• For example r = 9:

– The prime factors of 29 – 1 = 511 are 7 and 73

 Np = (511/9)(6/7)(72/73) = 48

1 1

12 1
, 2 1 i

r J J
eri

p i
i ii

p
N p

r p 
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Polynomials Yielding m-Sequences (Cont.)
r                          NP r                                    NP

2                          1
3                          2
4                          2
5                          6
6                          6
7                        18
8                        16
9                        48
10                      60
11                    176
12                    144
13                    630
14                    756
15                 1,800

16                            2,048
17                            7,710
18                            8,064
19                          27,594 
20                          24,000
21                          84,672
22                        120,032
23                        356,960
24                        276,480
25                     1,296,000
26                     1,719,900
27                     4,202,496
28                     4,741,632
29                   18,407,808
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Partial Autocorrelation 
of m-Sequences
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Partial Autocorrelation of m-Sequences
• Partial autocorrelation: a correlation over a partial period

– The partial autocorrelation of c(t) is defined by

– where Tw is the duration of the correlation and t is the 
starting time of the correlation

– It depends on the size and the starting time of the duration

1
( , , ) ( ) ( )

wt T

c w t
w

R t T c c d
T

    


 

time

Full period of m-sequence

t t+Tw

Full period of m-sequence

Duration
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Partial Autocorrelation of m-Sequences (Cont.)

• Using                                        and letting  =  – t  

• We have 

• Let  = kTc +  , Tw = WTc, and assume that t = kTc (the 
starting time aligns to the chip interval)    

( ) ( )n c
n

c t a p t nT




 

0

1
( , , ) ( ) ( )

1
( ) ( )

w

w

t T

c w t
w

T

m n c c
n mw

R t T c c d
T

a a p t mT p t nT d
T

    

   



 

 

 

     



  

time



t t+Tw



kTc
k'Tc WTc

• • • • • • • • •

• • • • • • • • •

Change variable
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Partial Autocorrelation of m-Sequences (Cont.)
• Then, we have 

• Because p(t) takes value only for 0  t  Tc, and 0    Tc 

– The integral is nonzero only for n – k′ – k = m – k′ or
n – k′ – k = m – k′ + 1  n = m + k or n = m + k + 1

( ),cp t nT n m k     



cmT t   ( 1) cm T t     

Tc


( 1) cm T t   

)( cmTtp 

( ), 1cp t nT n m k      

0

( , , ) ( , , , )

1
( ( ) ) ( ( ) )

c

c w c

WT

m n c c
n mc

R t T R k k W

a a p m k T p n k k T d
WT
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Partial Autocorrelation of m-Sequences (Cont.)
• Hence, we have

• Because 0    WTc and p(t) takes value only for 0  t  Tc 

– The integrand is nonzero when 0  (m – k)Tc  (W – 1)Tc

– The limits of m are reduced to k  m  W + k – 1

0

1 0

( , , , )

1
( ( ) ) ( ( ) )

1
( ( ) ) ( ( 1) )

c

c

c

WT

m m k c c
mc

WT

m m k c c
mc

R k k W

a a p m k T p m k T d
WT

a a p m k T p m k T d
WT









   

   







 




      

       

 

 

( ( ) ), 1cp m k T m k W      

( 1) cW T   cWT 


( 1) cW T  

( ( ) ),cp m k T m k W     
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Partial Autocorrelation of m-Sequences (Cont.)
• For a fixed value of m, 

– First integral is nonzero: (m – k)Tc    (m + 1 – k)Tc – 
– Second integral is nonzero: (m+1–k)Tc –    (m+1–k)Tc

   

   

1 ( 1 )

( )

1 ( 1 )

1 ( 1 )

1

( , , , )

1
( ) ( )

1
( ) ( 1)

1 1
1

c

c

c

c

c
W k m k T

m m k c cm k T
m kc

W k m k T

m m k c cm k T
m kc

W k

m m k m
m k c

R k k W

a a p m k T p m k T d
WT

a a p m k T p m k T d
WT

a a a a
W T W

















   

   



    

 

   

    


 






      

       

 
    

 

 

 


1

1

1 ( , , ) ( 1, , )

W k

m k
m k c

b b
c c

T

k k W k k W
T T
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Partial Autocorrelation of m-Sequences (Cont.)
• The discrete partial autocorrelation function of a sequence 

b(D) is defined by

• The partial autocorrelation function is

• Rc(, t, Tw) can be calculated from the knowledge of b(k, k, W)

– The value of b(k, k, W) is the number of agreements NA

minus the number of disagreements ND between b(0) and 
b(k) 

• over the window beginning at k and ending at k+W







11
),,(

kW

km
kmmb aa

W
Wkk

( , , , ) (1 ) ( , , ) ( 1, , )c b b
c c

R k k W k k W k k W
T T
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Example
• Consider a primitive polynomial g(D) = 1+D+D4

– Initial condition a(D) = 1

• Evaluate b(k, k, W) = b(6, k, 7) for the 15-bit m-sequence

• b(0) = 1 1 1 1 0 1 0 1 1 0 0 1 0 0 0 

• b(6) = 0 1 1 0 0 1 0 0 0 1 1 1 1 0 1 

• b(0) + b(6) = 1 0 0 1 0 0 0 1 1 1 1 0 1 0 1 

– 1 0 0 1 0 0 0 1 1 1 1 0 1 0 1  b(6, 1, 7) =(5 – 2)/7 = 3/7

– 1 0 0 1 0 0 0 1 1 1 1 0 1 0 1  b(6, 7, 7) =(2 – 5)/7 = –3/7

• The partial autocorrelation function is not two-valued and its 
variation is a function of the window size and the window 
placement
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Example (Cont.)
• The discrete partial autocorrelation function b(6, k, 7)

5 10 15 
k-0.5 

0 

0.5 

b(6,k,7)
Full-period

Autocorrelation
b(6) = b(6,k,15)
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Statistics of Partial Autocorrelation

• By Property II of m-sequences, the modulo-2 sum of b(0) and 
b(k) is another phase b(q) of the same sequence

• Averaging over all k:  

• By Property I of m-sequences, the inner summation is –1 for 
all i and q

– The mean is 

)11,10(,)1(,
1

),,(
1

0

 





ib
i

W

i
kqib aa

W
Wkk

1 1 1 1

0 0 0 0

1 1 1
( , , )

N W W N

b i q k i q k
k i i k

k k W a a
N W WN
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Statistics of Partial Autocorrelation (Cont.)
• The second moment of b(k,k,W) is: 

– When m = n, am+q+k′  an+q+k′ = 1 for all q and k  the inner 
summation is equal to N (W terms)

– When m  n, am+q+k′  an+q+k′, k = 0 ~ N – 1, is the modulo-2 
sum of b(0) and b(k) (another phase of the same sequence) 
 the inner summation is equal to –1 (W 2 – W terms)

1
2 2

0

1 1 1

2
0 0 0

1 1 1

2
0 0 0

1
( , , ) ( , , )

1 1

1

N

b b
k

N W W

m q k n q k
k m n

W W N

m q k n q k
m n k

k k W k k W
N

a a
N W

a a
W N
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Statistics of Partial Autocorrelation (Cont.)

• The variance over k of b(k,k,W) is 

– When W = N

– W  N  var[b(k,k,W)]  0 as expected

 
2

2
2

1 1 1
Var ( , , ) ( , , ) ( , , ) 1b b b

W
k k W k k W k k W

W N N
               

2 2
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1 1 1
( , , ) ( ) ( 1) 1b
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Statistics of Partial Autocorrelation (Cont.)

Prof. Tsai

Power Spectrum of m-Sequences 
with Timing Offset
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Power Spectrum of c(t)c(t+)
• The despreading operation is accomplished by correlating the 

received signal with a replica of c(t) 

• The replica of c(t) may be offset in phase by some fraction of a 
code period

• The power spectrum of the output b(t,) = c(t)c(t + ) of the 
despreading correlator for ||  Tc is (Appendix D) 

   

2

2

2

, 0

2

2
2

, 0

1
( ) 1 1 ( )

1
1 sinc

1
sinc

b
c

c c
n - nc

c c

m - mc

S f, δ f
N T

nf δ f nf
N T

mf mfN
δ f
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Power Spectrum of c(t)c(t+) (Cont.)
• For  = 0: a single spectral line at zero frequency

• For  = Tc: b(t,) is simply a phase-shifted replica of c(t), so 
Sb( f, ) = Sc( f ) 

• For   0 or Tc: significantly wider than the spectrum of c(t) 

– The b(t, ) transits more rapidly than c(t)     

t

t

t
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Power Spectrum of c(t)c(t+) (Cont.)
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Power Spectrum of c(t)c(t+) (Cont.)
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Power Spectrum of c(t)c(t+) (Cont.)
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Power Spectrum of c(t)c(t+) (Cont.)
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m-Sequences with Specific Delays
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Specific Delays of an m-Sequences
• To generate two different phases of an m-sequence

– The phase difference could be impractical (too large) to 
generate using a shift register or a delay line

– For example: 

• Assume that m = 15  P = 215 – 1 = 32767

• The desired phase difference: 214 = 16384

• Two techniques are discussed for generating specific delays of 
an m-sequence

– Calculate the required shift-register initial conditions

– Use the shift-and-add property of m-sequence generators

2 1 1 2
2 1 0 1 2

2 1 1 2
( 2) ( 1) 1 2

( )
( )k

k k k k k

b D b D b D b b D b D
D b D b D b D b b D b D

 
 

 
      

      
      
 
 

b(D) delayed
by k chips
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Determining the Initial Condition
• Consider the sequence generator for G-Config.:

– Given an initial condition a(D), the output is 

• Another initial condition a(D) will produce another output 
sequence b(D) = Dk b(D) 

– b(D) is the sequence b(D) delayed by k chips
output

b(D)
+ + + + + +

gr gr-1 gr-2 gr-3 g3 g2 g1

1ra 2a 1a 0a2ra 3ra

( ) ( ) ( )b D a D g D
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Determining the Initial Condition (Cont.)
• Note that the shift register states of an m-sequence generator are 

associated with elements of the extension field GF(2r) defined 
by the primitive polynomial g(D)

• Let q(D) represent an element of GF(2r)

– The element l units later, denoted by q(D), satisfies 

• From G-Config., considering the initial condition a(D), the 
next shift-register state a(D) satisfies (based on the circuit)

or equivalently, 

)()()()( DqDgDpDqDl 

)()()( 0
11 DgaDDaDDa  

)()()( 0
11 DaDgaDDaD  

quotient remainder
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Determining the Initial Condition (Cont.)

• Because g(D) is a primitive polynomial:                         
2 1 1 2 2( ) 1

r r

D g D D D    

1
01020

3
20

2
10

1
00

1

1
012

3
2

2
1

1

)(

)(




















DagaDgaDgaDgaDgaDgaD

DaaDaDaDaDaD
r

r
r

r
r

r

r
r

r
r





output

b(D)
+ + + + + +

gr gr-1 gr-2 gr-3 g3 g2 g1

1ra 2a 1a 0a2ra 3ra

quotient remainder

2 2 2 2
0( ) ( ) ( )

r r

D a D a D g D a D   

The same elements
of GF(2r) 

a(D)
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Determining the Initial Condition (Cont.)
• The output sequence advancing one unit is equivalent to that 

the shift-register contents are in the next state (after one clock 
cycle) 

• For each clock cycle, the contents of the shift register advance 
2r – 2 steps through the sequence of elements of GF(2r)

2 2 2 2
0( ) ( ) ( )

r r

D a D a D g D a D   
a(D) after

one clock cycle

a(D) advance
2r – 2 steps 
on GF(2r)

Equivalent Elements

GF(2r) elements D1D0 D2 ••• 2 3r

D  2 2r

D 

Advance 2r – 2 steps 
A total of 2r – 1 elements 
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Determining the Initial Condition (Cont.)
• To advance 2r – 2 steps is equivalent to retreat 1 step

• For the output sequence to advance one unit (or to delay one 
unit) of time of the sequence

– 2r – 2 elements shift (or 1 elements shift) on GF(2r)

Cycle through the elements of GF(2r) in reverse or forward
order 

GF(2r) elements D1D0 D2 ••• 2 3r

D  2 2r

D 

Advance 2r – 2 steps 
A total of 2r – 1 elements 

Retreat 1 step

Reverse Forward
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Example
• Example 3-17

• 2r – 2 = 24 – 2 = 14
• Advance one cycle 
14 elements shift on GF(2m)
D14

D28 = D15D13 = D13

D12

…

a3 a2 a1 + a0

4( ) 1g D D D  

Cycle Register 
state

a(D) Element 
of GF(24)

0 0 0 0 1 1 D0

1 1 0 0 1 1           +D3 D14

2 1 1 0 1 1     +D2+D3 D13

3 1 1 1 1 1+D+D2+D3 D12

4 1 1 1 0 D+D2+D3 D11

5 0 1 1 1 1+D+D2 D10

6 1 0 1 0 D +D3 D9

7 0 1 0 1 1+     D2 D8

8 1 0 1 1 1+D +D3 D7

9 1 1 0 0 D2+D3 D6

10 0 1 1 0 D+D2 D5

11 0 0 1 1 1+D D4

12 1 0 0 0 D3 D3

13 0 1 0 0 D2 D2

14 0 0 1 0 D D1
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Determining the Initial Condition (Cont.)
• The problem of finding the shift-register initial conditions 

corresponding to a particular advance or delay

– Reduce to a problem of manipulating elements of GF(2r)

• With a(D) defining one initial condition and a(D) defining the 
initial condition corresponding to an advance of k units

– a(D) is the remainder of dividing                       by g(D) 

– can be reduced using the fact that  

• The load corresponding to a delay of k units

– a(D) is the remainder of dividing               by g(D) 

(2 2) ( )
rkD a D

(2 2)rkD  2 1 1
r

D  

)(DaDk
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Example
• Consider g(D) = 1+ D + D4 with an initial condition a(D) = 1

– Find the initial condition: advance 20 units and delay 20 
units

• Period 15 units, an advance of 20 units  an advance of 5 units

– . Thus, a′(D) = a(D)D10 = D10

– D10 = 1 + D + D2

• Period 15 units, a delay of 20 units  a delay of 5 units

– a′(D) = a(D)D5 = D5 = D + D2

• This technique works only for the configuration of G-Config.

• For the configuration of F-Config.: a(D) of F-Config.  a(D) of 
G-Config.  a(D) of G-Config.  a(D) of F-Config.

(2 2) 5 14 70 10rkD D D D   
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Determining with Shift-and-Add Property
• Consider a r-stage shift-register generator shown as follows:

– The output b(D) = a(D)/g(D) 

– To determine the connection polynomial which is used to 
obtain b(D) = Dk b(D) 

• The output b(D) is defined by

– s(D) is a connection polynomial used to obtain b(D)    

2 1
0 1 2 1( ) ( ) ( ) ( ) ( ) ( ) ( )r

rb D s b D s Db D s D b D s D b D s D b D
      

b(D)
ar-1 ar-2+ + +

+

gr-1 gr-2 g1

s1

)(Db

a0

s0

+

s2

+

sr-1

D b(D) D2 b(D) Dr-1 b(D)

•••
•••

No. of possible s(D) = 2r – 1 
Cover all possible code phases
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Determining with Shift-and-Add Property (Cont.)
• Based on the result according to the method of determining 

the initial condition,

• The initial conditions are related by a(D) = s(D)a(D) (for any
pair of a(D) and a(D))

– a(D) can be arbitrarily chosen to be a(D) = 1

 s(D) = a(D) 

– a(D) can be determined by using the previous technique

( ) ( )
( ) ( ) ( ) ( )

( ) ( )

a D a D
b D s D b D s D

g D g D
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Example
• Consider g(D) = 1+ D + D4

– To obtain another sequence which is delay by 12 units

• Period 15 units, delay 12 units

 a′(D) = a(D)D12 = D12 = 1 + D + D2 + D3

 s(D) = a′(D) = 1 + D + D2 + D3

• It is presumed that the output b(D) is taken from the rightmost
shift register of the generator (Galois Configuration) 

 Delays of b(D) must be added

a3 a2 a1 + a0

+ + +
)(Db

b(D)
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Example (Cont.)
• For the alternative configuration (Fibonacci Configuration), 

the output is taken to be the input to the leftmost shift register 
stage 
– The delays of the sequence b(D) required to produce b(D) 

are available within the generator 
 No external delays are required

a3

+

a2 a1 a0

b(D)

+ + + )(Db
D b(D) D2 b(D) D3 b(D)

b(D)     = 0 1  1  1  1  0  1  0  1  1  0  0  1  0  0  …
D b(D) = 0  0  1  1  1  1  0  1  0  1  1  0  0  1  0  …
D2 b(D)= 0  0  0  1  1  1  1  0  1  0  1  1  0  0  1  …
D3 b(D)= 1  0  0  0  1  1  1  1  0  1  0  1  1  0  0  …
b(D)    = 1  1  0  1  0  1  1  0  0  1  0  0  0 1  1  …
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Security Issue
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Security of Maximal-Length Sequences
• SS systems are used to protect digital transmissions from being 

jammed or to preclude unintended reception

– It can only be met if the jammer or unintended receiver does 
not have knowledge of the spreading waveform c(t)   

• When the jammer or interceptor can receive a relatively 
noise-free copy of the transmitted signal

– The spreading code feedback connections and initial phase 
can be determined

• Suppose that the unintended party knows 

– An uncorrupted version of the spreading code b0, b1, b2, …

– The period of the sequence (by accurately measuring the 
received power spectrum)  m of m-sequences is obtained
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Security of Maximal-Length Sequences (Cont.)

• After m such equations have been obtained

– The m unknowns, g1 through gm, can be solved

• The number of symbols which must be received is 2m

– bi-m, …, bi , … , bi+m-1

– which is much shorter than the period N = 2m – 1    

1 1 2 2

1 1 1 2 1

2 1 1 2 2

1 2 1 3 2 1

  

i i- i- i-m m

i i i- i-m m

i i i i-m m

i m i m i m i m

b b g b g b g
b b g b g b g
b b g b g b g

b b g b g b g
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Example
• Consider that the sequence ‘0 1 1 0 0 1 0 0’ is received

– The known period of the m-sequence is 15  m = 4

• Adding (1) and (4) yields g3 = 0   

• Substituting g3 = 0 into (1) yields g2 = 0 

• Substituting g2 = g3 = 0 into (2) yields g4 = 1 

• Substituting g2 = g3 = 0 and g4 = 1 into (3) yields g1 = 1 

• The generating polynomial is g(D) = 1+ D + D4

4321

4321

4321

4321

00100)4(

10010)3(

11001)2(

01100)1(

gggg

gggg

gggg

gggg
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Gold Codes
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Cross-correlation Spectrum
• Channel resources may be shared by using spread spectrum 

techniques (Code Division Multiple Access, CDMA)

– Users are each assigned a different spreading code

– To find a set of codes with as little mutual interference as 
possible

• The cross-correlation (mutual interference) between two codes 
cannot be guaranteed for using two arbitrary m-sequences  

– Or using two arbitrary segments of the same m-sequence 
with a specific code phase offset 

• Gold codes 

– Exist relatively large sets of codes

– Have well controlled cross-correlation properties
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Cross-correlation Spectrum (Cont.)
• The full-period cross-correlation is 

• The cross-correlation spectrum: a list of all possible values of 
bb(k) and the number of values of k which yield that 
particular cross-correlation 

• For example, the autocorrelation spectrum for an m-sequence
(b=b) is 







  times;1 occurs
1

 time;1 occurs0.1

N
N

1

0

1
( )

N

bb n n k
n

k a a
N
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Decimation
• Consider an m-sequence b of length N, and a second sequence 

b obtained by sampling every q-th symbol of b

– The second sequence is said to be a decimation of the first, 
and b = b[q]

• The decimation of an m-sequence may or may not yield 
another m-sequence 

– When does yield an m-sequence  proper decimation

– b = b[q] has a period N if and only if gcd(N, q) = 1

b = 0 1  1  1 1  0  1 0  1  1 0  0  1 0  0  …

b = b[3] = 0  1  1  1  1 0  1  1  1  1  0  1  1  1  1  …

b             = 0 1 1 1 1 0 1 0 1 1 0 0 1 0 0 …

b = b[4] = 0  1  1  1 1  0  1  0  1  1  0  0  1  0  0  …
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Decimation (Cont.)
• Proper decimation by odd integers q will give all of the m-

sequences of period N

• Any pair of m-sequences having the same period N can be 
related by b = b[q] for some q
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Cross-correlation Spectrum
• The cross-correlation spectrum of pairs of m-sequences can be 

three-valued, four-valued, or many-valued

• Certain special pairs of m-sequences whose cross-correlation 
spectrum is three-valued are referred to as 

– Preferred pairs of m-sequences 

 

0.5( 1)

0.5( 2)

1
( );

1 2 , for  odd1
; ( ) , 2 1

1 2 , for  even
1

( ) 2 ;

n
n

n

t n
N

n
t n N

N n

t n
N
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Cross-correlation Spectrum (Cont.)
• The conditions for defining a preferred pair b and b are 

– (1) n  0 mod 4  n is odd or n = 2 mod 4

– (2) b = b[q], where q is odd and either

or

– (3)   

12  kq






4mod2for 2

odd for 1
),gcd(

n
n

kn

12  nN

1222  kkq
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Example
• Consider an m-sequence with

– The period N = 31  n = 5

• By Table 3-5, the entry [45] (100101) may be used to generate 
an m-sequence of length 31

• The decimation b = b[3] is proper, (b, b[3]): a candidate pair

– First condition: n = 1 mod 4

– Second condition: q is odd and q = 2k + 1 for k = 1

– Third condition: gcd(5, 1) = 1

• Can you find the generating polynomial g(D) ?

b = 1 0 1 0 1 1 1 0 1 1 0 0 0 1 1 1 1 1 0 0 1 1 0 1 0 0 1 0 0 0 0 …

b =b[3]= 1 0 1 1 0 1 0 1 0 0 0 1 1 1 0 1 1 1 1 1 0 0 1 0 0 1 1 0 0 0 0 …
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Example (Cont.)

• For any phase shift, the cross-correlation takes on one of the 
three values: – 9/31, – 1/31 or + 7/31

b          = 1 0 1 0 1 1 1 0 1 1 0 0 0 1 1 1 1 1 0 0 1 1 0 1 0 0 1 0 0 0 0 …
b(3)    = 1 0 1 0 1 0 0 0 1 1 1 0 1 1 1 1 1 0 0 1 0 0 1 1 0 0 0 0 1 0 1 …
bb(3)  = 0 0 0 0 0 1 1 0 0 0 1 0 1 0 0 0 0 1 0 1 1 1 1 0 0 0 1 0 1 0 1 …

 + 7/31

b          = 1 0 1 0 1 1 1 0 1 1 0 0 0 1 1 1 1 1 0 0 1 1 0 1 0 0 1 0 0 0 0 …
b(8)    = 0 0 0 1 1 1 0 1 1 1 1 1 0 0 1 0 0 1 1 0 0 0 0 1 0 1 1 0 1 0 1 …
bb(8)  = 1 0 1 1 0 0 1 1 0 0 1 1 0 1 0 1 1 0 1 0 1 1 0 0 0 1 0 0 1 0 1 …

 – 1/31

921)(,
even for 21
odd for 21

)( )15(5.0
)2(5.0

)1(5.0






 





nt
n
n

nt n

n
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Gold Codes
• Let b(D) and b(D) represent a preferred pair of m-sequences 

having period N = 2n – 1  

• The family of codes (N + 2 codes) defined by

is called the set of Gold codes for this preferred pair of m-
sequences

– D j b(D) represents a phase shift of b(D) by j units

2

1

( ); ( ); ( ) ( );

( ) ( );

( ) ( );

( ) ( );N

b D b D b D b D

b D Db D

b D D b D

b D D b D
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Gold Codes (Cont.)
• Any pair of codes in the set have a three-valued cross-

correlation spectrum

( ) ( );

( ) [ ( ) ( )] ( ) ( );

( ) [ ( ) ( )] ( ) ( );

[ ( ) ( )] [ ( ) ( )] ( ) ( );

i

i j k j

i j k

i j k l m

D b D b D

D b D b D D b D D b D D b D

D b D b D D b D b D D b D

D b D D b D b D D b D D b D D b D
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0.5( 2)

1
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1 2 , for  odd1
; ( ) , 2 1

1 2 , for  even
1

( ) 2 ;

n
n

n

t n
N

n
t n N

N n

t n
N






      


 

Preferred pair
Another phase of b(D)

Another phase of b(D)
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Gold Code Generator
• A typical shift register configuration used to generate a family 

of Gold codes

a4 +

Gold 
code 
output

521)( DDDg 

54321)( DDDDDg 

a3 a2 a1 a0

a4 +a3 a2 a1 a0++

+
For a family of

Gold codes  Different initial loads

b(D)

D j b(D)
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Gold Codes (Cont.)
• The complete family of Gold codes is obtained using different

initial loads of either of the shift registers

– Code b(D) is obtained by choosing some nonzero a(D) for 
upper generator and a(D) = 0 for lower generator 

– Code b(D) is obtained by choosing some nonzero a(D) for 
lower generator and a(D) = 0 for upper generator 

– The other N codes are obtained using the same a(D) used 
for b(D) with all possible nonzero a(D) 

– There are a total of N + 2 codes in any family of Gold codes 

• The period of any code in the family is N

– The same as the period of the m-sequences 
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Nonlinear Code Generators
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Nonlinear Code Generators
• The feedback connections for an n-stage maximal-length code 

can be easily determined from the knowledge of 2n successive
code symbols

– m-sequences are never used when a high degree of security
is required

• Nonlinear spreading codes increase security through increased 
complexity

• There are two approaches:

– Develop codes that cannot be described by a simple linear 
relationship

– Develop codes for which r is so large (computationally 
impossible): r is the degree of the polynomial
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Nonlinear Code Generators (Cont.)
• For a periodic sequence of period 2r – 1, it can be generated by 

a recirculating shift register of length 2r – 1 

– Consider a periodic sequence: 
1 1 1 1 1 0 1 0 1 0 0 1 1 0 0 0 1 0 0 0 0 … 

– Can be generated using a 21-stage recirculating shift register 

– The ratio is g(D) = 1 + D21: only one connection from the 
last stage to the input of the first stage

• Do not need to obtain the generating polynomial

21

16121186432

1

1
)(

D

DDDDDDDDD
Db






0 0 0 0 1 0 0 0 1 1 0 0 1 0 1 0 1 1 1 1 1
b(D)
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Nonlinear Code Generators (Cont.)
• The denominator can be factored into two terms and  

– It can be simply generated by a 5-stage shift register 

• The denominator can be further factored into two terms: 

– It can be generated by two separate sequence generators
whose outputs are modulo-2 summed

• Any periodic sequence can be generated by a linear feedback 
shift register 

• If the use of nonlinear elements is allowed, it may be much 
more efficiently generated 

)1)(1(

1
)(

322 DDDD
Db




51

1
)(

DD
Db
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Nonlinear Code Generators (Cont.)
• One type of circuit used to generate high-complexity sequences:  

– Nonlinear feedforward logic is added to a conventional 
linear feedback shift-register generator

– All binary multipliers have only two inputs

– ei,j coefficients indicate which shift register stages are 
connected to the multiplier (ei,j = 0: no connections)

– The final output sequence is the sum of all multipliers’ 
outputs

+ + +

g1 g2 g3 gr•••

Linear
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Nonlinear Code Generators (Cont.)

•

1
2,1e

+

•

1
3,2e

•

1
,1 rre 

•••

•••

•

2
3,1e

+

•

2
4,2e

•

2
,2 rre 

•••
•••

•

i
ie 1,1

+

•

i
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•

i
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•••
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r
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Nonlinear
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Nonlinear Code Generators (Cont.)

Linear (equivalent)

+

+

• • •

+
Output

+

Output
++

+++

+

+

+

Nonlinear
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Some Other Types of
Spreading Codes

Prof. Tsai 178

Kasami Sequences
• Kasami code sequences have the advantages, including

– A very large code space

– Bounded cross-correlation between different codes

• Let u and u form a preferred pair of binary m-sequence vectors 
of degree n, where n is an even integer

• For                      , the code set size is 2n/2(2n + 1) 

• For                      , the code set size is 2n/2(2n + 1) – 1

• The length of Kasami sequences is L = 2n – 1

4mod2n

0 mod 4n 

Based on Gold-like
sequences

Based on Gold
sequences
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Kasami Sequences (Cont.)
• Let u and u form a preferred pair of binary m-sequence vectors 

of degree n (with length L = 2n – 1), where  

– u = u[t(n)]: a decimation of u with t(n)  1 + 2(n+2)/2

– u = u[s(n)]: another decimation with s(n)  1 + 2n/2

• Forms another m-sequence with a period L1 = 2n/2 – 1    

• The large set of Kasami sequences K(u):

– Composed of u, u, and u

A shorter period

u

u

u u u uu

Period  L1 2n/2 + 1 repetitions

Cover sequences

Gold sequences
Period  L
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Kasami Sequences (Cont.)
• A set of Gold sequences can be obtained:

• Define a set of cover sequences

– c = [c0, c1, …, cL–1]: the repetition of u by 2n/2 + 1 times

• where u with a length L1 = 2n/2 – 1

• The large set of Kasami sequences K(u) is composed of u, u, 
and u

 uuuuuuuuuuuu  12 ,...,,,,,),( LDDDG

 1 1
1 1( ) , 0, ,L j

L j jC D j L
     u 0 c c  

All-zero sequence

    1 1
1( ) , ,L j

jK G D G


    u u u c u u 

(L1+1) different sequences
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Kasami Sequences (Cont.)
• The large set of Kasami sequences includes 

– A set of Gold sequences: covered by the cover sequence 0L

– Other sequences: Gold sequences covered by D j – 1c
• The code set size is

• The large set Kasami sequences properties include

– Polynomial degree: n (even)

– Sequence length: L = 2n – 1

– Code set size: >  21.5n

– Bounded cross-correlations:

/ 22 (2 1)n n
KS  

    LntLnsLLnsLnt )(,)(,1,2)(,2)( 
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Kasami Sequence Generator
• The large set of Kasami sequences generator

    1 1
1( ) , ,L j

jK G D G


    u u u c u u 

( )g x Kasami
sequence 
output

( )g x

( )g x

Generator polynomial

u

u

u
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Periodic and Aperiodic Auto-correlation
• For code sequences with complex numbers, the discrete 

periodic auto-correlation function (ACF) of b = {b0, b1,, bN–1} 
is defined as:

• Define the discrete aperiodic auto-correlation function of b as 

1

2
0

1
( )

N

p n n m
n

m b b
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1
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, 0
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Example
• Form some applications, the transmission of a signal may 

contain only one period of the spreading sequence

m a0 a1 a2 a3 a4 a5 a6 a7 Ra(m) Rp(m)

0 + + + – – + – – +8 +8

1 – + + + – – + – +1 0

2 – – + + + – – + –2 –4

3 + – – + + + – – +1 0

4 – + – – + + + – 0 0

5 – – + – – + + + –1 0

6 + – – + – – + + –2 –4

7 + + – – + – – + –1 0
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Barker Codes
• One requirement of code design is to minimize the maximal 

sidelobe of the aperiodic ACF 

• For binary sequences, the rightmost aperiodic ACF (only one 
chip) has a sidelobe |a(N – 1)| = 1/N

– The maximal sidelobe of a binary sequence is a, max  1/N

• The code sequences attaining                                                   
this bound are called Barker
codes

N Code
2 +  – +  +
3 +  +  –
4 +  +  – +               +  – – –
5 +  +  +  – +
7 +  +  +  – – +  –
11 +  – +  +  – +  +  +  – – –
13 +  +  +  +  +  – – +  +  – +  – +

Known Barker codes,
including the reversal        

(b0, , bN–1  bN–1, , b0) 
and negation (+  –; –  +)

Prof. Tsai 186

Example
• The periodic ACF and aperiodic ACF of the binary Barker code 

of length 7

m a0 a1 a2 a3 a4 a5 a6 Ra(m) Rp(m)

0 + + + – – + – +7 +7

1 – + + + – – + 0 –1

2 + – + + + – – –1 –1

3 – + – + + + – 0 –1

4 – – + – + + + –1 –1

5 + – – + – + + 0 –1

6 + + – – + – + –1 –1
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Polyphase Codes
• For some applications, numerous codes with perfect periodic 

ACF are required

– One approach: use non-binary PSK modulation with M > 2

• Chu codes (Zadoff-Chu (ZC) sequence): For an arbitrary 
length N, the code is generated as 

• The size of the phase alphabet grows linearly with length, and 
the distance between adjacent phases becomes very small

• The non-normalized periodic ACF of a even length code is

2

2

exp( ),  even

exp( 2 ),  odd
i

j i N N
a

j i N N





 


 
1 1

2

0 0

( ) exp exp 2
N N

p n n m
n n

m a a j m N j nm N  
 




 

     

ai = ai + N for all i
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Polyphase Codes (Cont.)
• For m = 0 mod N, p(m) = N

• For m  0 mod N, we have p(m) = 0 for all m  0 mod N

– The denominator never turns into zero unless m = 0 mod N

• Frank codes exist only for lengths that are squares of integers   
N = h2 = 4, 9, 16, …. The generation rule is 

• N = 4  h = 2, a = {+1 +1 +1 –1}, i = 0, 0, 0, , i = 0,…, 3

• N = 16  h = 4, a = {+1 +1 +1 +1 +1 +j –1 –j +1 –1 +1 –1 +1 –j

–1 +j}, i = 0, 0, 0, 0, 0, /2, , 3/2, 0, , 0, , 0, 3/2, , /2  

2
exp exp( ), : round-toward-zero (floor)i i

j i i
a x

h h

           

2 1 exp( 2 ) 0
( ) exp( )

1 exp( 2 ) 1 exp( 2 )p

j m
m j m N

j m N j m N
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Ternary Sequences
• Ternary sequences: the elements ai may be the zero value in 

addition to binary values 1

– The alphabet is now ternary {–1, 0, +1}

• For N = 13, a ternary sequence is

– {+1  0  0  +1  0  +1  +1  +1  –1  –1  0  +1  –1}

• +1    0    0  +1    0  +1  +1  +1  –1  –1    0  +1  –1

• +1    0    0  +1    0  +1  +1  +1  –1  –1    0  +1  –1                      
 p(m) = + 9 for m = 0 mod N

• +1    0    0  +1    0  +1  +1  +1  –1  –1    0  +1  –1

• –1  +1    0    0  +1    0  +1  +1  +1  –1  –1    0  +1   p(1) = 0 

• +1    0    0  +1    0  +1  +1  +1  –1  –1    0  +1  –1

• +1  –1  +1    0    0  +1    0  +1  +1  +1  –1  –1    0   p(2) = 0 
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Homework
• 3-1

• 3-2      1 + D^2 + D^5 

• 3-6

• 3-7

• 3-9

• 3-12

• 3-16

• 3-17

• 3-20

• 3-24

• 3-26


