展頻通訊 (Spread Spectrum Communications)

國立清華大學電機系暨通訊工程研究所 蔡育仁 台達館 821 室

Tel: 62210

E-mail: yrtsai@ee.nthu.edu.tw

Prof. Tsai

課程內容與要求

- 教科書: R. L. Peterson, R. E. Ziemer, and D. E. Borth Introduction to Spread Spectrum Communications, Prentice Hall International, Inc. (新月圖書)
- 課程內容
 - Basic Concepts
 - Spread-Spectrum Systems
 - Binary Shift-Register Sequences
 - Code Tracking Loops
 - Initial Synchronization (Acquisition)
 - CDMA Systems (W-CDMA System Specification)
- 講義位置: <u>https://nyquist.ee.nthu.edu.tw/WCS.html</u> (Password: SSC20250218COM5160Delta821)

課程內容與要求

- 參考書籍:
 - Valery P. Ipatov, Spread Spectrum and CDMA –
 Principles and Applications, John Wiley & Sons, 2005.
 - K. Fazel and S. Kaiser, Multi-Carrier and Spread Spectrum Systems, John Wiley & Sons, 2003.
 - Kamil Sh. Zigangirov, Theory of Code Division Multiple Access Communication, John Wiley & Sons, 2004.

3

- 課程要求
 - Homework (30 %)
 - Midterm Exam (35 %)
 - Final Exam (35 %)
- 助教時間:每週三 13:30~15:30, EECS 605 室
- 助教:<u>TWNTHUCOM5160@gmail.com</u>

Prof. Tsai

Introduction of Spread Spectrum Applications

Introduction

- **Spread-spectrum** modulation refers to any modulation scheme that produces a spectrum for the transmitted signal **much wider** than the bandwidth of the information being transmitted
 - To provide some degree of resistance to interference and jamming (jamming resistance, JR)
 - To provide a means for masking the transmitted signal in the background noise (low probability of intercept, LPI)
 - To provide resistance to the interference from multiple transmission paths (anti-multipath interference)
 - To permit the access of a common channel by more than one user (multiple access capability \Rightarrow CDMA)
 - To provide a means for measuring the distance between two points or time difference (ranging, channel sounding)

Prof. Tsai

Standard Components

- The standard components of a communications system are
 - Information source, including the source encoder
 - Data modulator
 - Power amplification (including the transmit antenna for radio communications)
 - Receiver front-end (including the receive antenna for radio communications)
 - Timing and Synchronization
 - Data demodulator
 - Information sink, including the source decoder

5

Nonstandard Components

- The **nonstandard** components of communications systems may include
 - Encryptor
 - Channel encoder
 - Spread-spectrum modulator
 - Spread-spectrum despreader
 - Channel decoder
 - Decryptor
- Items 2 through 5 are standard in a spread-spectrum communications system

Prof. Tsai

Digital Communications System

7

Spread-Spectrum Communications System

Some Applications of Spread-Spectrum

- Communications:
 - Military communications (unmanned aerial vehicle, UAV, Link 16)
 - Telecommunications (3G systems)
 - Data communications (Bluetooth, LoRa)
- Wireless locating:
 - Global Positioning System (GPS)
- Consumer electronics:
 - Wireless remote controls
- Measurement equipment:
 - Channel sounding
 - Distance (time) measuring

Global Positioning System

- 24 satellites in 6 **12-hour orbits** spaced uniformly around the earth
- Each satellite transmits two spread spectrum signals
 - 1575.42 MHz (L1 signal)
 - 1227.60 MHz (L2 signal)
- L1 signal (Coarse/Acquisition or C/A code):
 - Spread by a **short code** to make acquisition easy
 - Provide coarse positioning accuracy
- L2 signal (Precise or P code):
 - Spread by a long code
 - Provide precise positioning accuracy (about a factor of ten better than the coarse positioning accuracy)

Prof. Tsai

Global Positioning System (Cont.)

- The C/A code is available for the public, and the P code is generally reserved for military applications.
- The C/A codes are **Gold codes** with a period of **1023 chips** at a transmission rate of **1.023 Mchip/s**
 - Repeat for every 1 ms
 - Carrier a 50 bit/s navigation message
 - A chip corresponds to a distance 293 m
- The P code of a satellite is a sequence with a period of
 6.187104×10¹² chips at a transmission rate of 10.23 Mchip/s
 - A segment drawn from the master P code (38 segments)
 - Repeat for every 7 days
 - A chip corresponds to a distance 29.3 m

Mobile Cellular Systems

Third generation (3G) cellular systems are all digital standards applying CDMA technology

- cdma2000 - US, W-CDMA - Europe

Parameter	W-CDMA	cdma2000
Carrier spacing	5 MHz	3.75 MHz
Chip rate	4.096 MHz	3.6864 MHz
Data modulation	BPSK	FW – QPSK; RV - BPSK
Power control frequency	1500 Hz	800 Hz
Frame duration	10 ms	20 ms (also 5, 30, 40)
Coding	Turbo and convolutional	Turbo and convolutional
Base stations synchronized?	Asynchronous	Synchronous
Forward link pilot	TDM dedicated pilot	CDM common pilot
Antenna beamforming	TDM dedicated pilot	Auxiliary pilot
Prof. Tsai		13

Prof. Tsai

Unlicensed Band Communication Systems

Unlicensed band communication systems are generally applying spread spectrum technologies

- Frequency Hopping or Direct Sequence spread spectrum

- WLAN (Wireless Local Area Network): IEEE 802.11b ٠
- Bluetooth
- LoRa (Chirp Spread Spectrum)
- Unmanned Aerial Vehicles (UAV)/Drones Communications ٠ and Control
- **Cordless** Phone

. . .

Chapter 1 Introduction

Prof. Tsai

Contents

- Basic concepts of Spread Spectrum Technologies
- Linear FM (Chirp Signal)
- Time Hopping Spread Spectrum (THSS)
- Frequency Hopping Spread Spectrum (FHSS)
- Direct Sequence Spread Spectrum (DSSS)
- Hybrid Modulations

Basic concepts of Spread Spectrum Technologies

Prof. Tsai

Introduction

• The transmitted signals are generally selected to be relatively efficient in their use of the communication resources

- Power and Bandwidth

- Many real-world communication channels are modeled as stationary AWGN channels
- Other important channels:
 - A channel might be jammed by a continuous wave (CW) tone (military communication systems)
 - A channel might have multiple propagation paths between the transmitter and the receiver (multipath fading channels)
- Spread spectrum is a **modulation** and **demodulation** technique to mitigate the effects of jamming and multipath interferences
 - Not data modulation/demodulation

Spread Spectrum Characteristics

- For a spread spectrum system, the modulation/demodulation must have the following characteristics:
 - The transmitted signal energy must occupy a bandwidth much larger than the information bit rate (symbol rate)
 - The demodulation must be accomplished, in part, by correlating the received signal with a despreading signal
 - Which is a replica of the signal used at the transmitter to spread the information signal

Spread Spectrum Characteristics (Cont.)

- Some modulation techniques use a transmission bandwidth much larger than the minimum required transmission bandwidth but **are not** spread spectrum modulations:
 - Low-rate coding
 - Wideband frequency modulation (FM)
- Spread spectrum techniques are very useful in solving a wide range of communications problems
- The amount of **performance improvement** that is achieved through the use of spread spectrum is defined as
 - The **processing gain** of the spread spectrum system
- The processing gain is often approximated as
 - The ratio of the spread bandwidth to the information rate

Spread Spectrum Waveforms

- There are various types of spread spectrum waveforms:
 - Linear FM (Chirp Signal)
 - Time Hopping Spread Spectrum (THSS)
 - Frequency Hopping Spread Spectrum (FHSS)
 - Direct Sequence Spread Spectrum (DSSS)
 - Hybrid Modulations

Prof. Tsai

21

Linear FM

Linear FM Characteristics

- The linear FM signal is a **continuous** transmission technology
 - It is commonly used in radar systems (pulse compression), and LoRa (low-power wide-area network, LPWAN)
 - A sinusoidal wave with its frequency linearly varying with time
 - Up-chirp (Down-chirp): the frequency is linearly increasing (decreasing) with time from an initial frequency to a final frequency
 - No pseudorandom (PN) code is required for signal generation

Linear FM Generation

- Linear FM signal can be implemented by using
 - Voltage control oscillator (VCO): with a limited frequency range
 - Surface acoustic wave (SAW) device: with limited output power

Time Hopping Characteristics

- Time hopping spread spectrum is a **discontinuous** (in time domain) transmission technology
 - Time has been segmented into multiple T_s -second intervals
 - Take **basic modulation** technique but **raising** the data symbol rate to a multiple of M_T
 - Each interval contains a signal pulse **pseudo-randomly** located at **one** of the M_T locations within the interval

Time Hopping Generation

- In the generation of time hopping spread spectrum signals
 - A pseudorandom (PN) code is needed for time slot selection
- For the active time slot, the transmitted signal is a **wideband** signal
- The processing gain is M_T

Prof. Tsai

Frequency Hopping Characteristics

- Frequency hopping is the only spread spectrum technology that can use **multiple discontinuous** transmission bands
 - It has been used in GSM systems, Bluetooth, and WLANs
 - The entire band is divided into multiple channels, each of which is equal to the bandwidth for information transmission

Frequency Hopping Generation

- FHSS takes basic modulation technique and changes the carrier frequency in a **pseudorandom** manner
 - A pseudorandom (PN) code is needed for the carrier frequency selection

- According to the **hopping rate** (irrelevant to the processing gain) FHSS can be further divided into two classes:
 - Slow Frequency Hopping (SFH): transmit more than one symbol in a single hope duration
 - Fast Frequency Hopping (FFH): transmit one or less than one symbol in a single hope duration

Frequency Hopping Power Spectrum

- At any instant, the transmitted signal is a narrowband signal
- This narrowband signal switches the occupation channel in a **pseudorandom** manner
- The processing gain can be approximated as the number of available channels

Frequency Hopping Power Spectrum (Cont.)

• Spectrum-analyzer photo of a frequency-hop (FH) spread-spectrum signal.

Prof. Tsai

35

Direct Sequence Spread Spectrum

Direct Sequence Characteristics

- Direct sequence spread spectrum technology is widely used in mobile communications systems
 - cdmaOne (IS-95), cdma2000, W-CDMA and WLANs
 - Spectrum spreading is achieved by directly using a pseudorandom sequence with a rate much higher than that of the input data signal

Direct Sequence Generation

- DSSS takes direct multiplication to spread the data signal
 - A pseudorandom (PN) code is needed for spreading the input data sequence

Direct Sequence Power Spectrum

- At any instant, the transmitted signal is a wideband signal
- The instantaneous PSD is the same as the average PSD

Direct Sequence Power Spectrum (Cont.)

• Spectrum-analyzer photo of a direct-sequence (DS) spread-spectrum signal.

Source: MAXIM

Hybrid Modulations

Prof. Tsai

Hybrid Modulations

- Each of the above techniques possesses certain **advantages** and **disadvantages**
 - The technology selection relies on the system design objectives
- By **combining** more than two spread-spectrum techniques, hybrid modulations may possess more advantages
 - DS-FH
 - DS-TH
 - FH-TH

Comparison of SS Technologies

Prof. Tsai

Comparison of SS Technologies

- Comparing the SS technologies, we consider the following metrics:
 - Power requirement: (The transmission range is restricted by power requirement)
 - Maximum power = Average power: Linear FM, FHSS, DSSS
 - Maximum power >> Average power: THSS
 - Spectrum availability: (The processing gain is restricted by spectrum availability)
 - Limited to continuous band: Linear FM, THSS, DSSS
 - Can use discontinuous band: FHSS

Comparison of SS Technologies (Cont.)

- **Signaling (time sampling) rate:** (The hardware requirement is proportional to the signaling rate)
 - Proportional to the processing gain: THSS, DSSS
 - A constant: FHSS (depends on the hopping rate)
 - Other: Linear FM (depends on the frequency oscillator)
- Pseudorandom behavior: (The anti-jamming and LPI performance relies on the pseudorandom properties)
 - Without pseudorandom behavior: Linear FM
 - With pseudorandom behavior: THSS, FHSS, DSSS
- Capability of other channel scanning:
 - Incapable: Linear FM, FHSS, DSSS (continuous Tx/Rx)
 - Capable: THSS (discontinuous Tx/Rx)

Prof. Tsai

45